A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34737322
PubMed Central
PMC8568947
DOI
10.1038/s41541-021-00377-6
PII: 10.1038/s41541-021-00377-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Vaccine efficacy is often assessed by counting disease cases in a clinical trial. A new quantitative framework proposed here ("PoDBAY," Probability of Disease Bayesian Analysis), estimates vaccine efficacy (and confidence interval) using immune response biomarker data collected shortly after vaccination. Given a biomarker associated with protection, PoDBAY describes the relationship between biomarker and probability of disease as a sigmoid probability of disease ("PoD") curve. The PoDBAY framework is illustrated using clinical trial simulations and with data for influenza, zoster, and dengue virus vaccines. The simulations demonstrate that PoDBAY efficacy estimation (which integrates the PoD and biomarker data), can be accurate and more precise than the standard (case-count) estimation, contributing to more sensitive and specific decisions than threshold-based correlate of protection or case-count-based methods. For all three vaccine examples, the PoD fit indicates a substantial association between the biomarkers and protection, and efficacy estimated by PoDBAY from relatively little immunogenicity data is predictive of the standard estimate of efficacy, demonstrating how PoDBAY can provide early assessments of vaccine efficacy. Methods like PoDBAY can help accelerate and economize vaccine development using an immunological predictor of protection. For example, in the current effort against the COVID-19 pandemic it might provide information to help prioritize (rank) candidates both earlier in a trial and earlier in development.
1st Faculty of Medicine Charles University Prague Czech Republic
AH IT MSD Czech Republic Prague Czech Republic
Biostatistics and Research Decision Sciences Merck and Co Inc Kenilworth NJ USA
Department of Informatics and Predictive Sciences Celgene a BMS Company Boudry Switzerland
MRL IT Merck and Co Inc Kenilworth NJ USA
MRL IT MSD Czech Republic Prague Czech Republic
Quantitative Pharmacology and Pharmacometrics Merck and Co Inc Kenilworth NJ USA
Quantitative Pharmacology and Pharmacometrics MSD Czech Republic
Quantitative Sciences Janssen Research and Development San Diego CA USA
Zobrazit více v PubMed
Halloran, M. E., Longini Jr., I. M. & Struchiner, C. J. Design and Analysis of Vaccine Studies. 1–18 (Springer, 2010).
Gouglas D, et al. Estimating the cost of vaccine development against epidemic infectious diseases: a cost minimization study. Lancet Glob. Health. 2018;6:e1386–e1396. doi: 10.1016/S2214-109X(18)30346-2. PubMed DOI PMC
Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug development: a systematic review. Health Policy. 2011;100:4–17. doi: 10.1016/j.healthpol.2010.12.002. PubMed DOI
Chen J, Ting N. Design considerations for vaccine trials with a special focus on COVID-19 vaccine development. J. Data Sci. 2020;18:550–580. doi: 10.6339/JDS.202007_18(3).0020. DOI
Nguipdop Djomo, P., Thomas, S. L. & Fine, P. E. M. Correlates of vaccine-induced protection: methods and implications. (World Health Organization, The Department of Immunization, Vaccines and Biologicals, 2013).
Plotkin, S. & Gilbert, P. Correlates of Protection. 7th ed., 35–40 (Elsevier, 2017).
Plotkin SA. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008;3:401–409. doi: 10.1086/589862. PubMed DOI
Qin L, Gilbert PB, Corey L, McElrath MJ, Self SG. A framework for assessing immunological correlates of protection in vaccine trials. J. Infect. Dis. 2007;9:1304–1312. doi: 10.1086/522428. PubMed DOI
Plotkin, S. A. Complex correlates of protection after vaccination. Clin. Infect. Dis.10.1093/cid/cit048 (2013). PubMed
Chen X, Bailleux F, Desai K, Qin L, Dunning AJ. A threshold method for immunological correlates of protection. BMC Med. Res. Methodol. 2013;13:1–10. doi: 10.1186/1471-2288-13-1. PubMed DOI PMC
Jódar L, et al. Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine. 2003;21:3265–3272. doi: 10.1016/S0264-410X(03)00230-5. PubMed DOI
Li S, Parnes M, Chan ISF. Determining the cutoff based on a continuous variable to define two populations with application to vaccines. J. Biopharm. Stat. 2013;23:662–680. doi: 10.1080/10543406.2012.756502. PubMed DOI
Siber GR. Methods for estimating serological correlates of protection. Dev. Biol. Stand. 1997;89:183–296. PubMed
Siber GR, et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine. 2007;19:3816–3826. doi: 10.1016/j.vaccine.2007.01.119. PubMed DOI
Chan ISF, et al. Use of statistical models for evaluating antibody response as a correlate of protection against varicella. Stat. Med. 2002;21:3411–3430. doi: 10.1002/sim.1268. PubMed DOI
Dunning AJ. A model for immunological correlates of protection. Stat. Med. 2006;25:1485–1497. doi: 10.1002/sim.2282. PubMed DOI
Dunning AJ, Kensler J, Coudeville L, Bailleux F. Some extensions in continuous models for immunological correlates of protection. BMC Med. Res. Methodol. 2015;15:1–11. doi: 10.1186/s12874-015-0096-9. PubMed DOI PMC
Kohberger RC, Jemiolo D, Noriega F. Prediction of pertussis vaccine efficacy using a correlates of protection model. Vaccine. 2008;26:3516–3521. doi: 10.1016/j.vaccine.2008.04.016. PubMed DOI
Hobson D, Curry RL, Beare AS, Ward-Gardner A. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 1972;70:767–777. PubMed PMC
Coudeville L, et al. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model. BMC Med. Res. Methodol. 2010;10:18. doi: 10.1186/1471-2288-10-18. PubMed DOI PMC
Coudeville L, Andre P, Bailleux F, Weber F, Plotkin S. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes. Hum. Vaccine. 2010;6:841–848. doi: 10.4161/hv.6.10.12636. PubMed DOI PMC
Price BL, Gilbert PB, van der Laan MJ. Estimation of the optimal surrogate based on a randomized trial. Biometrics. 2018;74:1271–1281. doi: 10.1111/biom.12879. PubMed DOI PMC
Burzykowski, T., Molenberghs, G. & Buyse, M. The Evaluation of Surrogate Endpoints. (Springer, 2005).
Buyse M, Molenberghs G, Burzykowski T, Renard D, Geys H. The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics. 2000;1:49–67. doi: 10.1093/biostatistics/1.1.49. PubMed DOI
Tibaldi F, et al. Simplified hierarchical linear models for the evaluation of surrogate endpoints. J. Stat. Comput. Simul. 2003;73:643–658. doi: 10.1080/0094965031000062177. DOI
Taylor JM, Wang Y, Thiebaut R. Counterfactual links to the proportion of treatment effect explained by a surrogate marker. Biometrics. 2005;61:1102–1111. doi: 10.1111/j.1541-0420.2005.00380.x. PubMed DOI
Daniels, M. J. & Hughes, M. D. Meta‐analysis for the evaluation of potential surrogate markers. Stat. Med. 10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M (1998). PubMed
Frangakis, C. E. & Rubin, D. B. Principal stratification in causal inference. Biometrics10.1111/j.0006-341X.2002.00021.x (2004). PubMed PMC
Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med. 1989;8:431–440. doi: 10.1002/sim.4780080407. PubMed DOI
Vesikari T, et al. Oil-in-water emulsion adjuvant with influenza vaccine in young children. N. Engl. J. Med. 2011;365:1406–1416. doi: 10.1056/NEJMoa1010331. PubMed DOI
Black S, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J. 2011;30:1081–1085. doi: 10.1097/INF.0b013e3182367662. PubMed DOI
Pinheiro J, Bjornkamp B, Glimm E, Bretz F. Model-based dose finding under model uncertainty using general parametric models. Stat. Med. 2013;33:1646–1661. doi: 10.1002/sim.6052. PubMed DOI
Oxman MN, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 2005;352:2271–2284. doi: 10.1056/NEJMoa051016. PubMed DOI
Schmader KE, et al. Persistence of the efficacy of zoster vaccine in the shingles prevention study and the short-term persistence substudy. Clin. Infect. Dis. 2012;55:1320–1328. doi: 10.1093/cid/cis638. PubMed DOI PMC
Levin MJ, et al. Varicella-zoster virus–specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis. 2008;197:825–835. doi: 10.1086/528696. PubMed DOI PMC
Gilbert PB, et al. Fold rise in antibody titers by measured by glycoprotein-based enzyme-linked immunosorbent assay is an excellent correlate of protection for a herpes zoster vaccine, demonstrated via the vaccine efficacy curve. J. Infect. Dis. 2014;210:1573–1581. doi: 10.1093/infdis/jiu279. PubMed DOI PMC
Hu, B. et. al. Neutralization of wild type dengue virus isolates by antibodies elicited after immunization with a tetravalent dengue vaccine. Poster in Proceedings of the ASTMH 62nd Annual Meeting, Washington, DC USA, Nov 13–17, 2013.
Sabchareon A, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012;380:1559–1567. doi: 10.1016/S0140-6736(12)61428-7. PubMed DOI
Capeding MR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet. 2014;384:1358–1365. doi: 10.1016/S0140-6736(14)61060-6. PubMed DOI
Plotkin SA. Dengue vaccine, a double-edged sword. J. Pediatr. Infect. Dis. Soc. 2020;9:107–109. doi: 10.1093/jpids/piy140. PubMed DOI
Villar L, et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 2015;372:113–123. doi: 10.1056/NEJMoa1411037. PubMed DOI
Katzelnick LC, Harris E, Participants in the Summit on Dengue Immune Correlates of, P. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine. 2017;35:4659–4669. doi: 10.1016/j.vaccine.2017.07.045. PubMed DOI PMC
Salje H, et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature. 2018;557:719–723. doi: 10.1038/s41586-018-0157-4. PubMed DOI PMC
Moodie Z, et al. Neutralizing antibody correlates analysis of tetravalent dengue vaccine efficacy trials in Asia and Latin America. J. Infect. Dis. 2018;217:742–753. doi: 10.1093/infdis/jix609. PubMed DOI PMC
Nauta JJ, Beyer WE, Osterhaus AD. On the relationship between mean antibody level, seroprotection and clinical protection from influenza. Biologicals. 2009;37:216–221. doi: 10.1016/j.biologicals.2009.02.002. PubMed DOI
Lommerse, J. et al. (Found in) Translation—Cotton Rat Modelling and Validation with Model Based Meta-Analysis (MBMA) for RSV. Poster in American Conference on Pharmacometrics (ACoP11). Nov 9–13, 2020. TUE-043. ISSN:2688-3953.
Maas, B. M. et al. Closing the Gap: Using MBMA to Make Informed Decisions on Anti-RSV Drug Development. Poster in American Conference on Pharmacometrics (ACoP11), Nov 9–13, 2020.
Sachs, J. R. Pharmacometrics: A shot in the arm for vaccine discovery and development ~or~ Vaccines are not immune to the charms of pharmacometrics. Presentation in Population Approach Group in Europe 2019 (PAGE2019), 12 Jun 2019, Stockholm, Sweden.
Joffe MM, Greene T. Related causal frameworks for surrogate outcomes. Biometrics. 2009;65:530–538. doi: 10.1111/j.1541-0420.2008.01106.x. PubMed DOI
U.S. Food and Drug Administration. First vaccine approved by FDA to prevent serogroup B Meningococcal disease. https://www.fda.gov/news-events/press-announcements/first-vaccine-approved-fda-prevent-serogroup-b-meningococcal-disease (2014).
Berry DA. Bayesian clinical trials. Nat. Rev. Drug Discov. 2006;5:27–36. doi: 10.1038/nrd1927. PubMed DOI
Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 2017;377:62–70. doi: 10.1056/NEJMra1510062. PubMed DOI
Chen J, Liu T. Statistical considerations on implementing the MCP-Mod method for binary endpoints in clinical trials. Contemp. Clin. Trials Commun. 2020;19:100641. doi: 10.1016/j.conctc.2020.100641. PubMed DOI PMC
Buckland ST, Burnham KM, Augustin NH. Model selection: an integral part of inference. Biometrics. 1997;53:603–618. doi: 10.2307/2533961. DOI
U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Population Pharmacokinetics Guidance for Industry. https://www.fda.gov/media/128793/download (2019).
Donnenberg, A. D. Statistics of Immunological Testing. 2nd ed., 29–62 (CRC Press, 2008).
Byrd RH, Lu P, Nocedal J, Zhu C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 1995;16:1190–1208. doi: 10.1137/0916069. DOI
Wald A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943;54:426–482. doi: 10.1090/S0002-9947-1943-0012401-3. DOI
Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression