Elucidating vaccine efficacy using a correlate of protection, demographics, and logistic regression
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38689224
PubMed Central
PMC11059665
DOI
10.1186/s12874-024-02197-3
PII: 10.1186/s12874-024-02197-3
Knihovny.cz E-zdroje
- Klíčová slova
- Baseline covariates, Correlate of protection, Logistic regression, Relative risk, Vaccine efficacy,
- MeSH
- demografie statistika a číselné údaje MeSH
- klinické zkoušky, fáze III jako téma statistika a číselné údaje metody MeSH
- lidé MeSH
- logistické modely MeSH
- počítačová simulace MeSH
- randomizované kontrolované studie jako téma statistika a číselné údaje metody MeSH
- účinnost vakcíny * statistika a číselné údaje MeSH
- vakcinace statistika a číselné údaje metody MeSH
- vakcíny terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vakcíny MeSH
BACKGROUND: Vaccine efficacy (VE) assessed in a randomized controlled clinical trial can be affected by demographic, clinical, and other subject-specific characteristics evaluated as baseline covariates. Understanding the effect of covariates on efficacy is key to decisions by vaccine developers and public health authorities. METHODS: This work evaluates the impact of including correlate of protection (CoP) data in logistic regression on its performance in identifying statistically and clinically significant covariates in settings typical for a vaccine phase 3 trial. The proposed approach uses CoP data and covariate data as predictors of clinical outcome (diseased versus non-diseased) and is compared to logistic regression (without CoP data) to relate vaccination status and covariate data to clinical outcome. RESULTS: Clinical trial simulations, in which the true relationship between CoP data and clinical outcome probability is a sigmoid function, show that use of CoP data increases the positive predictive value for detection of a covariate effect. If the true relationship is characterized by a decreasing convex function, use of CoP data does not substantially change positive or negative predictive value. In either scenario, vaccine efficacy is estimated more precisely (i.e., confidence intervals are narrower) in covariate-defined subgroups if CoP data are used, implying that using CoP data increases the ability to determine clinical significance of baseline covariate effects on efficacy. CONCLUSIONS: This study proposes and evaluates a novel approach for assessing baseline demographic covariates potentially affecting VE. Results show that the proposed approach can sensitively and specifically identify potentially important covariates and provides a method for evaluating their likely clinical significance in terms of predicted impact on vaccine efficacy. It shows further that inclusion of CoP data can enable more precise VE estimation, thus enhancing study power and/or efficiency and providing even better information to support health policy and development decisions.
1st Faculty of Medicine Charles University Prague Czech Republic
Quantitative Pharmacology and Pharmacometrics Merck and Co Inc Rahway NJ USA
Zobrazit více v PubMed
Halloran ME, Longini IM, Struchiner CJ. Design and Analysis of Vaccine Studies. New York: Springer; 2010. pp. 1–18.
Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021;398:1407–1416. doi: 10.1016/S0140-6736(21)02183-8. PubMed DOI PMC
Piché-Renaud P-P, Swayze S, Buchan SA, et al. COVID-19 Vaccine Effectiveness Against Omicron Infection and Hospitalization. Pediatrics. 2023;151(4):e2022059513. doi: 10.1542/peds.2022-059513. PubMed DOI
Blanquart F, Abad C, Ambroise J, et al. Temporal, age, and geographical variation in vaccine efficacy against infection by the Delta and Omicron variants in the community in France, December 2021 to March 2022. Int J Infect Dis. 2023;133:89–96. doi: 10.1016/j.ijid.2023.04.410. PubMed DOI PMC
Deputy NP, Deckert J, Chard AN, et al. Vaccine Effectiveness of JYNNEOS against Mpox Disease in the United States. New Engl J Med. 2023;388:2434–2443. doi: 10.1056/NEJMoa2215201. PubMed DOI PMC
Plotkin SA, Orenstein WA, Offit PA, Edwards KM. Plotkin’s Vaccines. Amsterdam: Elsevier; 2017.
Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Stat Med. 1989;8(4):431–440. doi: 10.1002/sim.4780080407. PubMed DOI
Black S, Nicolay U, Vesikari T, et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr Infect Dis J. 2011;30:1081–1085. doi: 10.1097/INF.0b013e3182367662. PubMed DOI
Habib MA, Prymula R, Carryn S, et al. Correlation of protection against varicella in a randomized Phase III varicella-containing vaccine efficacy trial in healthy infants. Vaccine. 2021;39:3445–3454. doi: 10.1016/j.vaccine.2021.02.074. PubMed DOI
Salje H, Alera MT, Chua MN, et al. Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nat Med. 2021;27:1395–1400. doi: 10.1038/s41591-021-01392-9. PubMed DOI PMC
Danier J, Callegaro A, Soni J, et al. Association Between Hemagglutination Inhibition Antibody Titers and Protection Against Reverse-Transcription Polymerase Chain Reaction-Confirmed Influenza Illness in Children 6–35 Months of Age: Statistical Evaluation of a Correlate of Protection. Open Forum Infect Dis. 2022;9(2):ofab477. doi: 10.1093/ofid/ofab477. PubMed DOI PMC
Dudasova J, Laube R, Valiathan C, et al. A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data. NPJ Vaccines. 2021;6(1):133. doi: 10.1038/s41541-021-00377-6. PubMed DOI PMC
Genser B, Cooper PJ, Yazdanbakhsh M, Barreto ML, Rodrigues LC. A guide to modern statistical analysis of immunological data. BMC Immunol. 2007;8:27. doi: 10.1186/1471-2172-8-27. PubMed DOI PMC
Xu XS, Yuan M, Zhu H, et al. Full covariate modelling approach in population pharmacokinetics: understanding the underlying hypothesis tests and implications of multiplicity. Br J Clin Pharmacol. 2018;84(7):1525–1534. doi: 10.1111/bcp.13577. PubMed DOI PMC
Dunning AJ. A model for immunological correlates of protection. Stat Med. 2006;25(9):1485–1497. doi: 10.1002/sim.2282. PubMed DOI
Coudeville L, Andre P, Bailleux F, Weber F, Plotkin SA. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes. Hum Vaccin. 2010;6(10):841–848. doi: 10.4161/hv.6.10.12636. PubMed DOI PMC
Callegaro A, Tibaldi F. Assessing correlates of protection in vaccine trials: statistical solutions in the context of high vaccine efficacy. BMC Med Res Methodol. 2019;19:47. doi: 10.1186/s12874-019-0687-y. PubMed DOI PMC
Dunning AJ, Kensler J, Coudeville L, Bailleux F. Some extensions in continuous models for immunological correlates of protection. BMC Med Res Methodol. 2015;15:107. doi: 10.1186/s12874-015-0096-9. PubMed DOI PMC
Breslow NE, Lumley T, Ballantyne CM, Chambless LE, Kulich M. Using the whole cohort in the analysis of case-cohort data. Am J Epidemiol. 2009;169(11):1398–1405. doi: 10.1093/aje/kwp055. PubMed DOI PMC
Noma H, Tanaka S. Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information. Stat Methods Med Res. 2017;26(2):691–706. doi: 10.1177/0962280214556175. PubMed DOI