Reproductomics: Exploring the Applications and Advancements of Computational Tools
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39530905
PubMed Central
PMC11629954
DOI
10.33549/physiolres.935389
PII: 935389
Knihovny.cz E-zdroje
- MeSH
- asistovaná reprodukce trendy MeSH
- genomika MeSH
- infertilita genetika terapie diagnóza MeSH
- lidé MeSH
- rozmnožování genetika fyziologie MeSH
- strojové učení MeSH
- výpočetní biologie * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes. It is a rapidly emerging field that utilizes computational tools to analyze and interpret reproductive data, with the aim of improving reproductive health outcomes. It is time to explore the applications of reproductomics in understanding the molecular mechanisms underlying infertility, identification of potential biomarkers for diagnosis and treatment, and in improving assisted reproductive technologies (ARTs). Reproductomics tools include machine learning algorithms for predicting fertility outcomes, gene editing technologies for correcting genetic abnormalities, and single cell sequencing techniques for analyzing gene expression patterns at the individual cell level. However, there are several challenges, limitations and ethical issues involved with the use of reproductomics, such as the applications of gene editing technologies and their potential impact on future generations are discussed. The review comprehensively covers the applications and advancements of reproductomics, highlighting its potential to improve reproductive health outcomes and deepen our understanding of reproductive molecular mechanisms.
Zobrazit více v PubMed
Dai X, Shen L. Advances and trends in omics technology development. Front Med (Lausanne) 2022;9:911861. doi: 10.3389/fmed.2022.911861. PubMed DOI PMC
Miroslava R, Katarína Š, Ivana Š, Peter U. Omics applications in reproductive medicine. In: BARH D, editor. Biotechnology in Healthcare Volume 1. Academic Press; Elsevier, London: 2022. pp. 103–123. DOI
Chicco D. Gene expression from GEO: An R package to facilitate data reading from Gene Expression Omnibus (GEO) Methods Mol Biol. 2022;2401:187–194. doi: 10.1007/978-1-0716-1839-4_12. PubMed DOI
Baker M. Gene data to hit milestone. Nature. 2012;487:282–283. doi: 10.1038/487282a. PubMed DOI
Tapia A, Vilos C, Marín JC, Croxatto HB, Devoto L. Bioinformatic detection of E47, E2F1 and SREBP1 transcription factors as potential regulators of genes associated to acquisition of endometrial receptivity. Reprod Biol Endocrinol. 2011;9:1–14. doi: 10.1186/1477-7827-9-14. PubMed DOI PMC
Zhang D, Sun C, Ma C, Dai H, Zhang W. Data mining of spatial-temporal expression of genes in the human endometrium during the window of implantation. Reprod Sci. 2012;19:1085–1098. doi: 10.1177/1933719112442248. PubMed DOI
Bhagwat SR, Chandrashekar DS, Kakar R, Davuluri S, Bajpai AK, Nayak S, Bhutada S, Acharya K, Sachdeva G. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-ERdb. PLoS One. 2013;8:e58419. doi: 10.1371/journal.pone.0058419. PubMed DOI PMC
Talbi S, Hamilton A, Vo K, Tulac S, Overgaard MT, Dosiou C, Le Shay N, Nezhat CN, Kempson R, Lessey BA, Nayak NR, Giudice LC. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinol. 2006;147:1097–1121. doi: 10.1210/en.2005-1076. PubMed DOI
Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinol. 2007;148:3814–3826. doi: 10.1210/en.2006-1692. PubMed DOI
Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, Rojas J, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104:12451–12456. doi: 10.1073/pnas.0703451104. PubMed DOI PMC
Altmäe S, Esteban FJ, Stavreus-Evers A, Simon C, Giudice L, Lessey BA, Horcajadas JA, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20:12–28. doi: 10.1093/humupd/dmt048. PubMed DOI PMC
Wang Y-F, Chang M-Y, Chiang R-D, Hwang L-J, Lee C-M, Wang Y-H. Mining medical data: a case study of endometriosis. J Med Sys. 2013;37:1–7. doi: 10.1007/s10916-012-9899-y. PubMed DOI
Mathew D, Drury J, Valentijn A, Vasieva O, Hapangama D. In silico, in vitro and in vivo analysis identifies a potential role for steroid hormone regulation of FOXD3 in endometriosis-associated genes. Hum Reprod. 2016;31:345–354. doi: 10.1093/humrep/dev307. PubMed DOI
Liu J-L, Zhao M. A PubMed-wide study of endometriosis. Genomics. 2016;108:151–157. doi: 10.1016/j.ygeno.2016.10.003. PubMed DOI
Vincent ZL, Farquhar CM, Mitchell MD, Ponnampalam AP.Expression and regulation of DNA methyltransferases in human endometrium Fertil Steril 2011951522–5..e110.1016/j.fertnstert.2010.09.030 PubMed DOI
Caplakova V, Babusikova E, Blahovcova E, Balharek T, Zelieskova M, Hatok J. DNA methylation machinery in the endometrium and endometrial cancer. Anticancer Res. 2016;36:4407–4420. doi: 10.21873/anticanres.10984. PubMed DOI
Houshdaran S, Zelenko Z, Irwin JC, Giudice LC. Human endometrial DNA methylome is cycle-dependent and is associated with gene expression regulation. Mol Endocrinol. 2014;28:1118–1135. doi: 10.1210/me.2013-1340. PubMed DOI PMC
Saare M, Modhukur V, Suhorutshenko M, Rajashekar B, Rekker K, Sõritsa D, Karro H, et al. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin Epigenetics. 2016;8:2. doi: 10.1186/s13148-015-0168-z. PubMed DOI PMC
Kukushkina V, Modhukur V, Suhorutšenko M, Peters M, Mägi R, Rahmioglu N, Velthut-Meikas A, Altmäe S, Esteban FJ, Vilo J, Zondervan K, Salumets A, Laisk-Podar T. DNA methylation changes in endometrium and correlation with gene expression during the transition from pre-receptive to receptive phase. Sci Rep. 2017;7:3916. doi: 10.1038/s41598-017-03682-0. PubMed DOI PMC
Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15:R37. doi: 10.1186/gb-2014-15-2-r37. PubMed DOI PMC
Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, Qian J. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics. 2015;16:49. doi: 10.1186/s12864-015-1271-4. PubMed DOI PMC
Bunkar N, Pathak N, Lohiya NK, Mishra PK. Epigenetics: A key paradigm in reproductive health. Clin Exp Reprod Med. 2016;43:59–81. doi: 10.5653/cerm.2016.43.2.59. PubMed DOI PMC
Walker E, Hernandez AV, Kattan MW. Meta-analysis: Its strengths and limitations. Cleveland Clin J Med. 2008;75:431–439. doi: 10.3949/ccjm.75.6.431. PubMed DOI
Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics. 2012;28:573–580. doi: 10.1093/bioinformatics/btr709. PubMed DOI PMC
Altmäe S, Koel M, Võsa U, Adler P, Suhorutšenko M, Laisk-Podar T, Kukushkina V, et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci Rep. 2017;7:10077. doi: 10.1038/s41598-017-10098-3. PubMed DOI PMC
Horcajadas J, Pellicer A, Simon C. Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum Reprod Update. 2007;13:77–86. doi: 10.1093/humupd/dml046. PubMed DOI
Tseng L-H, Chen I, Chen M-Y, Yan H, Wang C-N, Lee C-L. Genome-based expression profiling as a single standardized microarray platform for the diagnosis of endometrial disorder: an array of 126-gene model. Fertil Steril. 2010;94:114–119. doi: 10.1016/j.fertnstert.2009.01.130. PubMed DOI
Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20:702–716. doi: 10.1093/humupd/dmu015. PubMed DOI PMC
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. miRNAs related in signaling pathways of women’s reproductive diseases: an overview. Mol Biol Rep. 2024;51:414. doi: 10.1007/s11033-024-09357-0. PubMed DOI
Zhou Y, Li Q, You S, Jiang H, Jiang L, He F, Hu L. Efficacy of mesenchymal stem cell-derived extracellular vesicles in the animal model of female reproductive diseases: A meta-analysis. Stem Cell Rev Rep. 2023;19:2299–2310. doi: 10.1007/s12015-023-10576-4. PubMed DOI
Robinson SW, Fernandes M, Husi H. Current advances in systems and integrative biology. Comput Struct Biotechnol J. 2014;11:35–46. doi: 10.1016/j.csbj.2014.08.007. PubMed DOI PMC
Chervitz SA, Deutsch EW, Field D, Parkinson H, Quackenbush J, Rocca-Serra P, Sansone SA, et al. Data standards for omics data: the basis of data sharing and reuse. Methods Mol Biol. 2011;719:31–69. doi: 10.1007/978-1-61779-027-0_2. PubMed DOI PMC
Altmäe S, Reimand J, Hovatta O, Zhang P, Kere J, Laisk T, Saare M, et al. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Mol Endocrinol. 2012;26:203–217. doi: 10.1210/me.2011-1196. PubMed DOI PMC
Gracie S, Pennell C, Ekman-Ordeberg G, Lye S, McManaman J, Williams S, Palmer L, et al. An integrated systems biology approach to the study of preterm birth using”-omic” technology-a guideline for research. BMC Pregnancy Childbirth. 2011;11:71. doi: 10.1186/1471-2393-11-71. PubMed DOI PMC
Mayhew T. Morphomics: An integral part of systems biology of the human placenta. Placenta. 2015;36:329–340. doi: 10.1016/j.placenta.2015.01.001. PubMed DOI
Jumeau F, Chalmel F, Fernandez-Gomez F-J, Carpentier C, Obriot H, Tardivel M, Caillet-Boudin ML, et al. Defining the human sperm microtubulome: an integrated genomics approach. Biol Reprod. 2017;96:93–106. doi: 10.1095/biolreprod.116.143479. PubMed DOI
Ghosh D, Sengupta J.A systems biology approach to elucidate the process of blastocyst implantation Indian J Physiol Pharmacol 20105441–50.. PubMed
Diaz-Beltran L, Cano C, Wall DP, Esteban FJ. Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci. 2013;3:253–272. doi: 10.3390/bs3020253. PubMed DOI PMC
Kyrgiou M, Pouliakis A, Panayiotides JG, Margari N, Bountris P, Valasoulis G, Paraskevaidi M, et al. Personalised management of women with cervical abnormalities using a clinical decision support scoring system. Gynecol Oncol. 2016;141:29–35. doi: 10.1016/j.ygyno.2015.12.032. PubMed DOI
Seli E, Robert C, Sirard M-A. OMICS in assisted reproduction: possibilities and pitfalls. Mol Hum Reprod. 2010;16:513–530. doi: 10.1093/molehr/gaq041. PubMed DOI
Haouzi D, Dechaud H, Assou S, Monzo C, De Vos J, Hamamah S. Transcriptome analysis reveals dialogues between human trophectoderm and endometrial cells during the implantation period. Hum Reprod. 2011;26:1440–1449. doi: 10.1093/humrep/der075. PubMed DOI
Aghajanova L, Shen S, Rojas AM, Fisher SJ, Irwin JC, Giudice LC. Comparative transcriptome analysis of human trophectoderm and embryonic stem cell-derived trophoblasts reveal key participants in early implantation. Biol Reprod. 2012;86:1–21. doi: 10.1095/biolreprod.111.092775. PubMed DOI
Leung A, Bader GD, Reimand J. HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics. 2014;30:2230–2232. doi: 10.1093/bioinformatics/btu172. PubMed DOI PMC
Silva JV, Yoon S, Domingues S, Guimarães S, Goltsev AV, da Cruz E, Silva EF, Mendes JF, et al. Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinformatics. 2015;16:12. doi: 10.1186/s12859-014-0432-9. PubMed DOI PMC
Li MJ, Wang P, Liu X, Lim EL, Wang Z, Yeager M, Wong MP, et al. GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 2012;40:D1047–D1054. doi: 10.1093/nar/gkr1182. PubMed DOI PMC
Beck T, Hastings RK, Gollapudi S, Free RC, Brookes AJ. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies. European J Hum Genet. 2014;22:949–952. doi: 10.1038/ejhg.2013.274. PubMed DOI PMC
Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, et al. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS One. 2013;8:e81148. doi: 10.1371/journal.pone.0081148. PubMed DOI PMC
Xiong Y, Wei Y, Gu Y, Zhang S, Lyu J, Zhang B, Chen C, et al. DiseaseMeth version 2.0: a major expansion and update of the human disease methylation database. Nucleic Acids Res. 2017;45:D888–D895. doi: 10.1093/nar/gkw1123. PubMed DOI PMC
Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2007;36:D154–D158. doi: 10.1093/nar/gkm952. PubMed DOI PMC
Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149–D153. doi: 10.1093/nar/gkm995. PubMed DOI PMC
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, et al. ArrayExpress-a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35:D747–D750. doi: 10.1093/nar/gkl995. PubMed DOI PMC
Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, et al. The PeptideAtlas project. Nucleic Acids Res. 2006;34:D655–D658. doi: 10.1093/nar/gkj040. PubMed DOI PMC
Vizcaíno JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2015;44:D447–D456. doi: 10.1093/nar/gkv1145. PubMed DOI PMC
Nanjappa V, Thomas JK, Marimuthu A, Muthusamy B, Radhakrishnan A, Sharma R, Ahmad Khan A, et al. Plasma Proteome Database as a resource for proteomics research: 2014 update. Nucleic Acids Res. 2014;42:D959–D965. doi: 10.1093/nar/gkt1251. PubMed DOI PMC
Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, et al. A draft map of the human proteome. Nature. 2014;509:575–581. doi: 10.1038/nature13302. PubMed DOI PMC
Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582–587. doi: 10.1038/nature13319. PubMed DOI
Yu W, Clyne M, Khoury MJ, Gwinn M. Phenopedia and Genopedia: disease-centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics. 2010;26:145–146. doi: 10.1093/bioinformatics/btp618. PubMed DOI PMC
Tarín JJ, García-Pérez MA, Hamatani T, Cano A. Infertility etiologies are genetically and clinically linked with other diseases in single meta-diseases. Reprod Biol Endocrinol. 2015;13:31. doi: 10.1186/s12958-015-0029-9. PubMed DOI PMC
Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A. OMICtools: an informative directory for multi-omic data analysis. Database (Oxford) 2014;2014:bau069. doi: 10.1093/database/bau069. PubMed DOI PMC
Hua J, Xu B, Yang Y, Ban R, Iqbal F, Cooke HJ, Zhang Y, Shi Q. Follicle Online: an integrated database of follicle assembly, development and ovulation. Database (Oxford) 2015;2015:bav036. doi: 10.1093/database/bav036. PubMed DOI PMC
Zhang Y, Zhong L, Xu B, Yang Y, Ban R, Zhu J, Cooke HJ, et al. SpermatogenesisOnline 1.0: a resource for spermatogenesis based on manual literature curation and genome-wide data mining. Nucleic Acids Res. 2013;41:D1055–D1062. doi: 10.1093/nar/gks1186. PubMed DOI PMC
Luk AC-S, Gao H, Xiao S, Liao J, Wang D, Tu J, Rennert OM, et al. GermlncRNA: a unique catalogue of long non-coding RNAs and associated regulations in male germ cell development. Database (Oxford) 2015;2015:bav044. doi: 10.1093/database/bav044. PubMed DOI PMC
Darde TA, Sallou O, Becker E, Evrard B, Monjeaud C, Le Bras Y, Jégou B, et al. The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community. Nucleic Acids Res. 2015;43:W109–W116. doi: 10.1093/nar/gkv345. PubMed DOI PMC
Bai W, Yang W, Wang W, Wang Y, Liu C, Jiang Q, Hua J, Liao M. GED: a manually curated comprehensive resource for epigenetic modification of gametogenesis. Brief Bioinform. 2017;18:98–104. doi: 10.1093/bib/bbw007. PubMed DOI
Leo CP, Vitt UA, Hsueh AJ. The Ovarian Kaleidoscope database: an online resource for the ovarian research community. Endocrinology. 2000;141:3052–3054. doi: 10.1210/endo.141.9.7679. PubMed DOI
Ben-Shlomo I, Vitt UA, Hsueh AJ. Perspective: the Ovarian Kaleidoscope database-II. Functional genomic analysis of an organ-specific database. Endocrinol. 2002;143:2041–2044. doi: 10.1210/endo.143.6.8851. PubMed DOI
Hsueh AJ, Rauch R. Ovarian Kaleidoscope database: ten years and beyond. Biol Reprod. 2012;86:192. doi: 10.1095/biolreprod.112.099127. PubMed DOI PMC
Kim M, Cooper BA, Venkat R, Phillips JB, Eidem HR, Hirbo J, Nutakki S, et al. GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes. Nucleic Acids Res. 2016;44:D908–D916. doi: 10.1093/nar/gkv1137. PubMed DOI PMC
Uzun A, Triche EW, Schuster J, Dewan AT, Padbury JF. dbPEC: a comprehensive literature-based database for preeclampsia related genes and phenotypes. Database (Oxford) 2016;2016:baw006. doi: 10.1093/database/baw006. PubMed DOI PMC
Uzun A, Laliberte A, Parker J, Andrew C, Winterrowd E, Sharma S, Istrail S, Padbury JF. dbPTB: a database for preterm birth. Database (Oxford) 2012;2012:bar069. doi: 10.1093/database/bar069. PubMed DOI PMC
Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, et al. TM4 microarray software suite. Methods Enzymol. 2006;411:134–193. doi: 10.1016/S0076-6879(06)11009-5. PubMed DOI
Kallio MA, Tuimala JT, Hupponen T, Klemelä P, Gentile M, Scheinin I, Koski M, et al. Chipster: user-friendly analysis software for microarray and other high-throughput data. BMC Genomics. 2011;12:507. doi: 10.1186/1471-2164-12-507. PubMed DOI PMC
Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A. ReadXplorer-visualization and analysis of mapped sequences. Bioinformatics. 2014;30:2247–2254. doi: 10.1093/bioinformatics/btu205. PubMed DOI PMC
Reimers M, Carey VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol. 2006;411:119–134. doi: 10.1016/S0076-6879(06)11008-3. PubMed DOI
Zhang Y, Szustakowski J, Schinke M. Bioinformatics analysis of microarray data. Methods Mol Biol. 2009;573:259–284. doi: 10.1007/978-1-60761-247-6_15. PubMed DOI
Ekmekci B, McAnany CE, Mura C. An introduction to programming for bioscientists: a Python-based primer. PLoS Comput Biol. 2016;12:e1004867. doi: 10.1371/journal.pcbi.1004867. PubMed DOI PMC
Rausch TK, Schillert A, Ziegler A, Lüking A, Zucht H-D, Schulz-Knappe P. Comparison of pre-processing methods for multiplex bead-based immunoassays. BMC Genomics. 2016;17:601. doi: 10.1186/s12864-016-2888-7. PubMed DOI PMC
Esteban F, Cano C, De la Haza I, Cano-Ortiz A, Vélez de Mendizábal N, Goñi J, Horcajadas JA.Análisis bioinformático de datos: aplicación en microarrays CMR 20081487–96..
Sui Y, Zhao X, Speed TP, Wu Z. Background adjustment for DNA microarrays using a database of microarray experiments. J Comput Biol. 2009;16:1501–1515. doi: 10.1089/cmb.2009.0063. PubMed DOI PMC
Mirroshandel SA, Ghasemian F, Monji-Azad S. Applying data mining techniques for increasing implantation rate by selecting best sperms for intra-cytoplasmic sperm injection treatment. Comput Methods Programs Biomed. 2016;137:215–229. doi: 10.1016/j.cmpb.2016.09.013. PubMed DOI
Goncalves A, Tikhonov A, Brazma A, Kapushesky M. A pipeline for RNA-seq data processing and quality assessment. Bioinformatics. 2011;27:867–869. doi: 10.1093/bioinformatics/btr012. PubMed DOI PMC
Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1–2-3 with limma, Glimma and edgeR. F1000Res. 2016;5:ISCB Comm J-1408. doi: 10.12688/f1000research.9005.2. PubMed DOI PMC
McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33:1179–1186. doi: 10.1093/bioinformatics/btw777. PubMed DOI PMC
Cazaly E, Thomson R, Marthick JR, Holloway AF, Charlesworth J, Dickinson JL. Comparison of pre-processing methodologies for Illumina 450k methylation array data in familial analyses. Clin Epigenetics. 2016;8:75. doi: 10.1186/s13148-016-0241-2. PubMed DOI PMC
Cruz-Marcelo A, Guerra R, Vannucci M, Li Y, Lau CC, Man T-K. Comparison of algorithms for pre-processing of SELDI-TOF mass spectrometry data. Bioinformatics. 2008;24:2129–2136. doi: 10.1093/bioinformatics/btn398. PubMed DOI PMC
Egea RR, Puchalt NG, Escrivá MM, Varghese AC. OMICS: current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci. 2014;7:73–92. doi: 10.4103/0974-1208.138857. PubMed DOI PMC
Silvestri E, Lombardi A, de Lange P, Glinni D, Senese R, Cioffi F, Lanni A, et al. Studies of complex biological systems with applications to molecular medicine: the need to integrate transcriptomic and proteomic approaches. J Biomed Biotechnol. 2011:810242. doi: 10.1155/2011/810242. PubMed DOI PMC
Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics. 2015;16:347. doi: 10.1186/s12859-015-0778-7. PubMed DOI PMC
Yang S, Mercante DE, Zhang K, Fang Z. An integrated approach for RNA-seq data normalization. Cancer Inform. 2016;15:129–141. doi: 10.4137/CIN.S39781. PubMed DOI PMC
Borgaonkar SP, Hocker H, Shin H, Markey MK. Comparison of normalization methods for the identification of biomarkers using MALDI-TOF and SELDI-TOF mass spectra. OMICS. 2010;14:115–126. doi: 10.1089/omi.2009.0082. PubMed DOI
Chawade A, Alexandersson E, Levander F. Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. J Proteome Res. 2014;13:3114–3120. doi: 10.1021/pr401264n. PubMed DOI PMC
Chadeau-Hyam M, Campanella G, Jombart T, Bottolo L, Portengen L, Vineis P, Liquet B, Vermeulen RC. Deciphering the complex: Methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen. 2013;54:542–557. doi: 10.1002/em.21797. PubMed DOI
Wagner F. GO-PCA: An unsupervised method to explore gene expression data using prior knowledge. PLoS One. 2015;10:e0143196. doi: 10.1371/journal.pone.0143196. PubMed DOI PMC
Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng. 2004;16:1370–1386. doi: 10.1109/TKDE.2004.68. DOI
Altmäe S, Tamm-Rosenstein K, Esteban FJ, Simm J, Kolberg L, Peterson H, Metsis M, et al. Endometrial transcriptome analysis indicates superiority of natural over artificial cycles in recurrent implantation failure patients undergoing frozen embryo transfer. Reprod Biomed Online. 2016;32:597–613. doi: 10.1016/j.rbmo.2016.03.004. PubMed DOI
Hatfield GW, Hung Sp, Baldi P. Differential analysis of DNA microarray gene expression data. Mol Microbiol. 2003;47:871–877. doi: 10.1046/j.1365-2958.2003.03298.x. PubMed DOI
Guo Y, Graber A, McBurney RN, Balasubramanian R. Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms. BMC Bioinformatics. 2010;11:447. doi: 10.1186/1471-2105-11-447. PubMed DOI PMC
Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics. 2015;8:33. doi: 10.1186/s12920-015-0108-y. PubMed DOI PMC
Franco D, Bonet F, Hernandez-Torres F, Lozano-Velasco E, Esteban FJ, Aranega AE. Analysis of microRNA microarrays in cardiogenesis. Methods Mol Biol. 2016;1375:207–221. doi: 10.1007/7651_2015_247. PubMed DOI
Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, et al. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14:482–517. doi: 10.1038/s41596-018-0103-9. PubMed DOI PMC
Paczkowska M, Barenboim J, Sintupisut N, Fox NS, Zhu H, Abd-Rabbo D, Mee MW, et al. Integrative pathway enrichment analysis of multivariate omics data. Nat Commun. 2020;11:735. doi: 10.1038/s41467-019-13983-9. PubMed DOI PMC
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Reimand J, Arak T, Vilo J. g: Profiler-a web server for functional interpretation of gene lists (2011 update) Nucleic Acids Res. 2011;39:W307–W315. doi: 10.1093/nar/gkr378. PubMed DOI PMC
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128. PubMed DOI PMC
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi: 10.1371/journal.pone.0021800. PubMed DOI PMC
Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics. 2003;19:2155–2157. doi: 10.1093/bioinformatics/btg290. PubMed DOI
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. doi: 10.1186/1752-0509-8-S4-S11. PubMed DOI PMC
Santiago JA, Bottero V, Potashkin JA. Dissecting the molecular mechanisms of neurodegenerative diseases through network biology. Frontiers Aging Neurosci. 2017;9:166. doi: 10.3389/fnagi.2017.00166. PubMed DOI PMC
Gehlenborg N, O’donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, et al. Visualization of omics data for systems biology. Nat Methods. 2010;7(3 Suppl):S56–S68. doi: 10.1038/nmeth.1436. PubMed DOI
Paquette J, Tokuyasu T. EGAN: exploratory gene association networks. Bioinformatics. 2010;26:285–286. doi: 10.1093/bioinformatics/btp656. PubMed DOI PMC
Hayrabedyan S, Todorova K, Jabeen A, Metodieva G, Toshkov S, Metodiev MV, Mincheff M, Fernández N. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production. Sci Rep. 2016;6:18896. doi: 10.1038/srep18896. PubMed DOI PMC
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
Horcajadas JA, Mínguez P, Dopazo J, Esteban FJ, Domínguez F, Giudice LC, Pellicer A, Simón C. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab. 2008;93:4500–4510. doi: 10.1210/jc.2008-0588. PubMed DOI
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Liu H, Zeng L, Yang K, Zhang G. A network pharmacology approach to explore the pharmacological mechanism of xiaoyao powder on anovulatory infertility. Evid Based Complement Alternat Med. 2016;2016:2960372. doi: 10.1155/2016/2960372. PubMed DOI PMC
Sabetian S, Shamsir MS. Systematic analysis of protein interaction network associated with azoospermia. Int J Mol Sci. 2016;17:1857. doi: 10.3390/ijms17111857. PubMed DOI PMC
Biswas N, Chakrabarti S. Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020;10:588221. doi: 10.3389/fonc.2020.588221. PubMed DOI PMC
Frank E, Hall MA, Witten IH. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques. Fourth Edition. Morgan Kaufmann, The University of Waikato; New Zealand: 2016. The WEKA Workbench; p. 128.
Hung F-H, Chiu H-W. Cancer subtype prediction from a pathway-level perspective by using a support vector machine based on integrated gene expression and protein network. Comput Methods Programs Biomed. 2017;141:27–34. doi: 10.1016/j.cmpb.2017.01.006. PubMed DOI
Liu Q, Gan M, Jiang R. A sequence-based method to predict the impact of regulatory variants using random forest. BMC Syst Biol. 2017;11:7. doi: 10.1186/s12918-017-0389-1. PubMed DOI PMC
Way GP, Allaway RJ, Bouley SJ, Fadul CE, Sanchez Y, Greene CS. A machine learning classifier trained on cancer transcriptomes detects NF1 inactivation signal in glioblastoma. BMC Genomics. 2017;18:127. doi: 10.1186/s12864-017-3519-7. PubMed DOI PMC