Diagnostic challenges in complicated case of glioblastoma
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články
PubMed
39534304
PubMed Central
PMC11554483
DOI
10.3389/pore.2024.1611875
PII: 1611875
Knihovny.cz E-zdroje
- Klíčová slova
- I-FISH, MLPA, WGS, aCGH/SNP, cytogenomics, diagnostics, gene panel,
- MeSH
- glioblastom * genetika patologie diagnóza MeSH
- hybridizace in situ fluorescenční metody MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- nádory mozku * genetika patologie diagnóza MeSH
- prognóza MeSH
- srovnávací genomová hybridizace metody MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- Názvy látek
- nádorové biomarkery MeSH
Glioblastoma is the commonest primary malignant brain tumor, with a very poor prognosis and short overall survival. It is characterized by its high intra- and intertumoral heterogeneity, in terms of both the level of single-nucleotide variants, copy number alterations, and aneuploidy. Therefore, routine diagnosis can be challenging in some cases. We present a complicated case of glioblastoma, which was characterized with five cytogenomic methods: interphase fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, comparative genomic hybridization array and single-nucleotide polymorphism, targeted gene panel, and whole-genome sequencing. These cytogenomic methods revealed classical findings associated with glioblastoma, such as a lack of IDH and TERT mutations, gain of chromosome 7, and loss of chromosome 10. At least three pathological clones were identified, including one with whole-genome duplication, and one with loss of 1p and suspected loss of 19q. Deletion and mutation of the TP53 gene were detected with numerous breakends on 17p and 20q. Based on these findings, we recommend a combined approach to the diagnosis of glioblastoma involving the detection of copy number alterations, mutations, and aneuploidy. The choice of the best combination of methods is based on cost, time required, staff expertise, and laboratory equipment. This integrated strategy could contribute directly to tangible improvements in the diagnosis, prognosis, and prediction of the therapeutic responses of patients with brain tumors.
Zobrazit více v PubMed
Rasras S, Zibara K, Vosughi T, Zayeri Z. Genetics and epigenetics of glioblastoma: therapeutic challenges. Clin Cancer Invest J (2018) 7:43–9. 10.4103/ccij.ccij_82_17 DOI
Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med (2005) 352:987–96. 10.1056/nejmoa043330 PubMed DOI
Park SH, Won J, Kim SI, Lee Y, Park CK, Kim SK, et al. Molecular testing of brain tumor. J Pathol Transl Med (2017) 51:205–23. 10.4132/jptm.2017.03.08 PubMed DOI PMC
Perry A, Wesseling P. Histologic classification of gliomas. Handbook Clin Neurol (2016) 134:71–95. 10.1016/B978-0-12-802997-8.00005-0 PubMed DOI
Pessôa IA, Amorim CK, Ferreira WAS, Sagica F, Brito JR, Othman M, et al. Detection and correlation of single and concomitant TP53, PTEN, and CDKN2A alterations in gliomas. Int J Mol Sci (2019) 20:2658–20. 10.3390/ijms20112658 PubMed DOI PMC
Horbinski C, Ligon KL, Brastianos P, Huse JT, Venere M, Chang S, et al. The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro-Oncol (2019) 21:1498–508. 10.1093/neuonc/noz119 PubMed DOI PMC
Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol (2021) 23:1231–51. 10.1093/neuonc/noab106 PubMed DOI PMC
Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol (2021) 18:170–86. 10.1038/s41571-020-00447-z PubMed DOI PMC
DeCordova S, Shastri A, Tsolaki AG, Yasmin H, Klein L, Singh SK, et al. Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Front Immunol (2020) 11:1402–18. 10.3389/fimmu.2020.01402 PubMed DOI PMC
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science (2014) 344:1396–401. 10.1126/science.1254257 PubMed DOI PMC
Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Ann Rev Pathol (2013) 8:277–302. 10.1146/annurev-pathol-020712-163923 PubMed DOI
Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X, Sanchez CA, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet (2006) 38:468–73. 10.1038/ng1768 PubMed DOI
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer (2012) 12:323–34. 10.1038/nrc3261 PubMed DOI
Park SY, Gönen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest (2010) 120:636–44. 10.1172/JCI40724 PubMed DOI PMC
Albertson DG, Pinkel D. Genomic microarrays in human genetic disease and cancer. Hum Mol Genet (2003) 12:145–52. 10.1093/hmg/ddg261 PubMed DOI
Zemanova Z, Michalova K, Babicka L, Pavlistova L, Jarosova M, Holzerova M, et al. Clinical relevance of complex chromosomal aberrations in bone marrow cells of 107 children with ETV6/RUNX1 positive acute lymphoblastic leukemia (ALL). Blood (2006) 108:2278. 10.1182/blood.v108.11.2278.2278 DOI
Andrews S. FastQC: a quality control tool for high throughput sequence data (2010). Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (Accessed February 2, 2024).
Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, et al. Sarek: a portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Res (2020) 9:63. 10.12688/f1000research.16665.1 PubMed DOI PMC
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (2016) 32:3047–8. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res (2017) 27:849–64. 10.1101/gr.213611.116 PubMed DOI PMC
Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Kallberg M, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods (2018) 15:591–4. 10.1038/s41592-018-0051-x PubMed DOI
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics (2016) 32:1220–2. 10.1093/bioinformatics/btv710 PubMed DOI
Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics (2012) 28:423–5. 10.1093/bioinformatics/btr670 PubMed DOI PMC
Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W, et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci USA (2010) 107:16910–5. 10.1073/pnas.1009843107 PubMed DOI PMC
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the Genome of Drosophila melanogaster Strain w1118; iso-2; iso-3. Fly (Austin) (2012) 6:80–92. 10.4161/fly.19695 PubMed DOI PMC
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl variant Effect predictor. Genome Biol (2016) 17:122. 10.1186/s13059-016-0974-4 PubMed DOI PMC
The R Development Core Team. R: a language and environment for statistical computing. 2022.
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res (2009) 19:1639–45. 10.1101/gr.092759.109 PubMed DOI PMC
Xiao J, Jin X, Zhang C, Zou H, Chang Z, Han N, et al. Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma. Theranostics (2021) 11:3060–73. 10.7150/THNO.54150 PubMed DOI PMC
Eckel-Passow JE, Decker PA, Kosel ML, Kollmeyer TM, Molinaro AM, Rice T, et al. Using germline variants to estimate glioma and subtype risks. Neuro-Oncol (2019) 21:451–61. 10.1093/neuonc/noz009 PubMed DOI PMC
Clarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov (2020) 10:942–63. 10.1158/2159-8290.CD-19-1030 PubMed DOI PMC
Zheng C, Miao X, Li Y, Huang Y, Ruan J, Ma X, et al. Determination of genomic copy number alteration emphasizing a restriction site-based strategy of genome re-sequencing. Bioinformatics (2013) 29:2813–21. 10.1093/bioinformatics/btt481 PubMed DOI
Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M, et al. A t(1; 19)(q10; p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res (2006) 66:9852–61. 10.1158/0008-5472.CAN-06-1796 PubMed DOI
Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R, Blaschke B, et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol (2004) 14:121–30. 10.1111/j.1750-3639.2004.tb00044.x PubMed DOI PMC
Smith J, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G, et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene (1999) 18:4144–52. 10.1038/sj.onc.1202759 PubMed DOI
Henrich KO, Schwab M, Westermann F. 1p36 tumor suppression—a matter of dosage? Cancer Res (2012) 72:6079–88. 10.1158/0008-5472.CAN-12-2230 PubMed DOI
Ichimura K, Vogazianou AP, Liu L, Pearson DM, Bäcklund LM, Plant K, et al. 1p36 is a preferential target of chromosome 1 deletions in astrocytic tumours and homozygously deleted in a subset of glioblastomas. Oncogene (2008) 27:2097–108. 10.1038/sj.onc.1210848 PubMed DOI PMC
Ball MK, Kollmeyer TM, Praska CE, McKenna ML, Giannini C, Raghunathan A, et al. Frequency of false-positive FISH 1p/19q codeletion in adult diffuse astrocytic gliomas. Neuro-oncol Adv (2020) 2:vdaa109. 10.1093/noajnl/vdaa109 PubMed DOI PMC
Brandner S. Molecular diagnostics of adult gliomas in neuropathological practice. Acta Med Acad (2021) 50:29–46. 10.5644/ama2006-124.324 PubMed DOI
Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell (2013) 155:462–77. 10.1016/j.cell.2013.09.034 PubMed DOI PMC
Zacher A, Kaulich K, Stepanow S, Wolter M, Köhrer K, Felsberg J, et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol (2017) 27:146–59. 10.1111/bpa.12367 PubMed DOI PMC
Albertoni M, Daub DM, Arden KC, Viars CS, Powell C, Van Meir EG. Genetic instability leads to loss of both p53 alleles in a human glioblastoma. Oncogene (1998) 16:321–6. 10.1038/sj.onc.1201544 PubMed DOI
Shiraishi S, Tada K, Nakamura H, Makino K, Kochi M, Saya H, et al. Influence of p53 mutations on prognosis of patients with glioblastoma. Cancer (2002) 95:249–57. 10.1002/cncr.10677 PubMed DOI
Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J, et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet (2018) 50:1189–95. 10.1038/s41588-018-0165-1 PubMed DOI PMC
Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet (2013) 45:1134–40. 10.1038/ng.2760 PubMed DOI PMC
Boisselier B, Dugay F, Belaud-Rotureau M-A, Coutolleau A, Garcion E, Menei P, et al. Whole genome duplication is an early event leading to aneuploidy in IDH-wild type glioblastoma. Oncotarget (2018) 9:36017–28. 10.18632/oncotarget.26330 PubMed DOI PMC
Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol (2012) 30:413–21. 10.1038/nbt.2203 PubMed DOI PMC
Quinton RJ, DiDomizio A, Vittoria MA, Kotýnková K, Ticas CJ, Patel S, et al. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature (2021) 590:492–7. 10.1038/s41586-020-03133-3 PubMed DOI PMC
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell (2019) 178:835–49. 10.1016/j.cell.2019.06.024 PubMed DOI PMC
Wang T, Li B, Nelson CE, Nabavi S. Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinformatics (2019) 20:40–16. 10.1186/s12859-019-2599-6 PubMed DOI PMC
Wrzeszczynski KO, Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, et al. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma. Neurol Genet (2017) 3:e164–8. 10.1212/NXG.0000000000000164 PubMed DOI PMC
Gray PN, Dunlop CL, Elliott AM. Not all next generation sequencing diagnostics are created equal: understanding the nuances of solid tumor assay design for somatic mutation detection. Cancers (2015) 7:1313–32. 10.3390/cancers7030837 PubMed DOI PMC
Gilly A, Southam L, Suveges D, Kuchenbaecker K, Moore R, Melloni GEM, et al. Very low-depth whole-genome sequencing in complex trait association studies. Bioinformatics (2019) 35:2555–61. 10.1093/bioinformatics/bty1032 PubMed DOI PMC
NCCN. The NCCN clinical practice guidelines in oncology (NCCN Guidelines®) for guideline central nervous system cancers version 3.2024 © national comprehensive cancer network, inc. 2024. All rights reserved. Available from: https://www.nccn.org/ (Accessed October 3, 2024).
Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, et al. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun (2018) 9:2087. 10.1038/s41467-018-04448-6 PubMed DOI PMC
Yeo AT, Shah R, Aliazis K, Pal R, Xu T, Zhang P, et al. Driver mutations dictate the immunologic landscape and response to checkpoint immunotherapy of glioblastoma. Cancer Immunol Res (2023) 11:629–45. 10.1158/2326-6066.cir-22-0655 PubMed DOI PMC
Klein AM, De Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about P53. Genes Dev (2021) 35:575–601. 10.1101/gad.347872.120 PubMed DOI PMC
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 inhibition in the treatment of glioblastoma: from concept to clinical investigation. Biomedicines (2023) 11:1879. 10.3390/biomedicines11071879 PubMed DOI PMC
An Z, Aksoy O, Zheng T, Fan Q-W, Weiss WA. Epidermal growth factor receptor (EGFR) and EGFRvIII in glioblastoma (GBM): signaling pathways and targeted therapies. Oncogene (2018) 37:1561–75. 10.1038/s41388-017-0045-7 PubMed DOI PMC
Liu X, Chen X, Shi L, Shan Q, Cao Q, Yue C, et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res (2019) 38:219. 10.1186/s13046-019-1235-7 PubMed DOI PMC
Choi SW, Jung HA, Cho H-J, Kim TM, Park C-K, Nam D-H, et al. A multicenter, phase II trial of GC1118, a novel anti-EGFR antibody, for recurrent glioblastoma patients with EGFR amplification. Cancer Med (2023) 12:15788–96. 10.1002/cam4.6213 PubMed DOI PMC