Misincorporations of amino acids in p53 in human cells at artificially constructed termination codons in the presence of the aminoglycoside Gentamicin
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
39563734
PubMed Central
PMC11573534
DOI
10.3389/fgene.2024.1407375
PII: 1407375
Knihovny.cz E-resources
- Keywords
- NMD, gentamicin, p53, readthrough, stop codon,
- Publication type
- Journal Article MeSH
Readthrough of a translation termination codon is regulated by ribosomal A site recognition and insertion of near-cognate tRNAs. Small molecules exist that mediate incorporation of amino acids at the stop codon and production of full-length, often functional protein but defining the actual amino acid that is incorporated remains a challenging area. Herein, we report on the development a human cell model that can be used to determine whether rules can be developed using mass spectrometry that define the type of amino acid that is placed at a premature termination codon (PTC) during readthrough mediated by an aminoglycoside. The first PTC we analyzed contained the relatively common cancer-associated termination signal at codon 213 in the p53 gene. Despite of identifying a tryptic peptide with the incorporation of an R at codon 213 in the presence of the aminoglycoside, there were no other tryptic peptides detected across codon 213 that could be recovered; hence we constructed a more robust artificial PTC model. P53 expression plasmids were developed that incorporate a string of single synthetic TGA (opal) stop codons at S127P128A129 within the relatively abundant tryptic p53 peptide 121-SVTCTYSPALNK-132. The treatment of cells stably expressing the p53-TGA129 mutation, treated with Gentamicin, followed by immunoprecipitation and trypsinization of p53, resulted in the identification R, W, or C within the tryptic peptide at codon-TGA129; as expected based on the two-base pairing of the respective anticodons in the tRNA to UGA, with R being the most abundant. By contrast, incorporating the amber or ochre premature stop codons, TAA129 or TAG129 resulted in the incorporation of a Y or Q amino acid, again as expected based on the two base pairings to the anticodons, with Q being the most abundant. A reproducible non-canonical readthrough termination codon-skip event at the extreme C-terminus at codon 436 in the SBP-p53 fusion protein was detected which provided a novel assay for non-canonical readthrough at an extreme C-terminal PTC. The incorporation of amino acids at codons 127, 128, or 129 generally result in a p53 protein that is predicted to be 'unfolded' or inactive as defined by molecular dynamic simulations presumably because the production of mixed wild-type p53 and mutant oligomers are known to be inactive through dominant negative effects of the mutation. The data highlight the need to not only produce novel small molecules that can readthrough PTCs or C-terminal termination codons, but also the need to design methods to insert the required amino acid at the position that could result in a 'wild-type' functional protein.
Biochemistry and Microbiology University of Victoria Victoria BC Canada
Department of Organic Chemistry Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland
International Centre for Cancer Vaccine Science University of Gdańsk Gdańsk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czechia
See more in PubMed
Abreu R. B. V., Gomes T. T., Nepomuceno T. C., Li X., Fuchshuber-Moraes M., De Gregoriis G., et al. (2022). Functional restoration of BRCA1 nonsense mutations by aminoglycoside-induced readthrough. Front. Pharmacol. 13, 935995. 10.3389/fphar.2022.935995 PubMed DOI PMC
Allamand V., Bidou L., Arakawa M., Floquet C., Shiozuka M., Paturneau-Jouas M., et al. (2008). Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes. J. Gene Med. 10, 217–224. 10.1002/jgm.1140 PubMed DOI
Anastassiadis T., Kohrer C. (2023). Ushering in the era of tRNA medicines. J. Biol. Chem. 299, 105246. 10.1016/j.jbc.2023.105246 PubMed DOI PMC
Baradaran-Heravi A., Balgi A., Hosseini-Farahabadi S., Choi K., Has C., Roberge M. (2021). Effect of small molecule eRF3 degraders on premature termination codon readthrough. Nucleic Acids Res. 49, 3692–3708. 10.1093/nar/gkab194 PubMed DOI PMC
Baradaran-Heravi A., Balgi A. D., Zimmerman C., Choi K., Shidmoossavee F. S., Tan J. S., et al. (2016). Novel small molecules potentiate premature termination codon readthrough by aminoglycosides. Nucleic Acids Res. 44, 6583–6598. 10.1093/nar/gkw638 PubMed DOI PMC
Bidou L., Bugaud O., Merer G., Coupet M., Hatin I., Chirkin E., et al. (2022). 2-Guanidino-quinazoline promotes the readthrough of nonsense mutations underlying human genetic diseases. Proc. Natl. Acad. Sci. U. S. A. 119, e2122004119. 10.1073/pnas.2122004119 PubMed DOI PMC
Bidou L., Hatin I., Perez N., Allamand V., Panthier J. J., Rousset J. P. (2004). Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther. 11, 619–627. 10.1038/sj.gt.3302211 PubMed DOI
Borgatti M., Altamura E., Salvatori F., D'Aversa E., Altamura N. (2020). Screening readthrough compounds to suppress nonsense mutations: possible application to β-thalassemia. J. Clin. Med. 9, 289. 10.3390/jcm9020289 PubMed DOI PMC
Cheng X., Zhou T., Yang Z., Zhou J., Gao M., Huang Y., et al. (2022). Premature termination codon: a tunable protein translation approach. Biotechniques 73, 80–89. 10.2144/btn-2022-0046 PubMed DOI
Dabrowski M., Bukowy-Bieryllo Z., Zietkiewicz E. (2014). Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. RNA Biol. 12, 950–958. 10.1080/15476286.2015.1068497 PubMed DOI PMC
Floquet C., Deforges J., Rousset J. P., Bidou L. (2011). Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39, 3350–3362. 10.1093/nar/gkq1277 PubMed DOI PMC
Hughes K. T., Chevance F. F. V. (2018). Lost in translation: seeing the forest by focusing on the trees. RNA Biol. 15, 182–185. 10.1080/15476286.2017.1403717 PubMed DOI PMC
Karousis E. D., Muhlemann O. (2022). The broader sense of nonsense. Trends Biochem. Sci. 47, 921–935. 10.1016/j.tibs.2022.06.003 PubMed DOI
Labunskyy V. M., Hatfield D. L., Gladyshev V. N. (2014). Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777. 10.1152/physrev.00039.2013 PubMed DOI PMC
Lee R. E., Lewis C. A., He L., Bulik-Sullivan E. C., Gallant S. C., Mascenik T. M., et al. (2022). Small-molecule eRF3a degraders rescue CFTR nonsense mutations by promoting premature termination codon readthrough. J. Clin. Invest. 132, e154571. 10.1172/JCI154571 PubMed DOI PMC
Li S., Li J., Shi W., Nie Z., Zhang S., Ma F., et al. (2023). Pharmaceuticals promoting premature termination codon readthrough: progress in development. Biomolecules 13, 988. 10.3390/biom13060988 PubMed DOI PMC
Litchfield K., Reading J., Lim E., Xu H., Liu P., Al-Bakir M., et al. (2020). Escape from nonsense-mediated decay associates with anti-tumor immunogenicity. Nat. Commun. 11, 3800. 10.1038/s41467-020-17526-5 PubMed DOI PMC
Lombardi S., Testa M. F., Pinotti M., Branchini A. (2022). Translation termination codons in protein synthesis and disease. Adv. Protein Chem. Struct. Biol. 132, 1–48. 10.1016/bs.apcsb.2022.06.001 PubMed DOI
Ma N. J., Hemez C. F., Barber K. W., Rinehart J., Isaacs F. J. (2018). Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue. Elife 7, e34878. 10.7554/eLife.34878 PubMed DOI PMC
Maki C., Huibregtse J., Howley Pm P. (1996). In vivo ubiquitination and proteasome‐mediated degradation of p53. Cancer Res. 56, 2649–2654. PubMed
Manjunath L. E., Singh A., Som S., Eswarappa S. M. (2022). Mammalian proteome expansion by stop codon readthrough. Wiley Interdiscip. Rev. RNA 14, e1739. 10.1002/wrna.1739 PubMed DOI
Martin L., Grigoryan A., Wang D., Wang J., Breda L., Rivella S., et al. (2014). Identification and characterization of small molecules that inhibit nonsense-mediated RNA decay and suppress nonsense p53 mutations. Cancer Res. 74, 3104–3113. 10.1158/0008-5472.CAN-13-2235 PubMed DOI PMC
Milner J., Medcalf E. (1991). Cotranslation of activated mutant p53 with wild-type drives the wild-type p53 protein into the mutant conformation. Cell. 65, 765–774. 10.1016/0092-8674(91)90384-b PubMed DOI
Muramatsu T., Heckmann K., Kitanaka C., Kuchino Y. (2001). Molecular mechanism of stop codon recognition by eRF1: a wobble hypothesis for peptide anticodons. FEBS Lett. 488, 105–109. 10.1016/s0014-5793(00)02391-7 PubMed DOI
Palma M., Lejeune F. (2021). Deciphering the molecular mechanism of stop codon readthrough. Biol. Rev. Camb Philos. Soc. 96, 310–329. 10.1111/brv.12657 PubMed DOI
Palomar-Siles M., Heldin A., Zhang M., Strandgren C., Yurevych V., van Dinter J. T., et al. (2022). Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine. Cell. death and Dis. 13, 997. 10.1038/s41419-022-05431-2 PubMed DOI PMC
Pisarev A., Skabkin M., Pisareva V., Skabkina O., Rakotondrafara A., Hentze M., et al. (2010). The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell. 37, 196–210. 10.1016/j.molcel.2009.12.034 PubMed DOI PMC
Roy B., Leszyk J. D., Mangus D. A., Jacobson A. (2015). Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3. Proc. Natl. Acad. Sci. U. S. A. 112, 3038–3043. 10.1073/pnas.1424127112 PubMed DOI PMC
Schmied W., Elsasser S., Uttamapinant C., Chin J. (2014). Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA, synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136, 15577–15583. 10.1021/ja5069728 PubMed DOI PMC
Schueren F., Lingner T., George R., Hofhuis J., Dickel C., Gartner J., et al. (2014). Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. Elife 3, e03640. 10.7554/eLife.03640 PubMed DOI PMC
Tahmasebi S., Khoutorsky A., Mathews M. B., Sonenberg N. (2018). Translation deregulation in human disease. Nat. Rev. Mol. Cell. Biol. 19, 791–807. 10.1038/s41580-018-0034-x PubMed DOI
Vindry C., Guilin O., Wolff P., Marie P., Mortreux F., Mangeot P., et al. (2023). A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium. Nucleic Acids Res. 51, 7580–7601. 10.1093/nar/gkad482 PubMed DOI PMC
Wangen J. R., Green R. (2020). Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. Elife 9, e52611. 10.7554/eLife.52611 PubMed DOI PMC
Yamashita A., Ohnishi T., Kashima I., Taya Y., Ohno S. (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev. 15, 2215–2228. 10.1101/gad.913001 PubMed DOI PMC
Zhang H., Lyu Z., Fan Y., Evans C. R., Barber K. W., Banerjee K., et al. (2020). Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 117, 22167–22172. 10.1073/pnas.2013543117 PubMed DOI PMC
Zhang J., Xin L., Shan B., Chen W., Xie M., Yuen D., et al. (2012). PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics 11, 010587. 10.1074/mcp.M111.010587 PubMed DOI PMC
Zhang M., Heldin A., Palomar-Siles M., Ohlin S., Bykov V. J. N., Wiman K. G. (2017). Synergistic rescue of nonsense mutant tumor suppressor p53 by combination treatment with aminoglycosides and Mdm2 inhibitors. Front. Oncol. 7, 323. 10.3389/fonc.2017.00323 PubMed DOI PMC