Changes in Race Performance During the Underwater Phases of a 200 m Bi-Fins Race Simulation After Application of Respiratory Muscle Training-A Case Study in the Current World Record Holder
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA_FTK_2024_014
Palacký University Olomouc
PubMed
39590908
PubMed Central
PMC11598143
DOI
10.3390/sports12110306
PII: sports12110306
Knihovny.cz E-resources
- Keywords
- finswimming performance, respiratory muscle training, swim training, underwater phases, video analysis,
- Publication type
- Journal Article MeSH
Maximal athletic performance can be limited by various factors, including restricted respiratory function. These limitations can be mitigated through targeted respiratory muscle training, as supported by numerous studies. However, the full potential of respiratory training in competitive finswimming has not been fully investigated. This case study aims to evaluate the effects of eight-week respiratory muscle training (RMT) on performance variability during the underwater phases of a 200 m bi-fins race simulation in an elite finswimmer (current world record holder and multiple world championship medalist). Performance variability was assessed based on pre-test, inter-test, and post-test data. Each measurement included pulmonary function and swim performance evaluations. In this study, underwater performance parameters, such as distance, time, velocity, and number of kicks, were assessed using video analysis synchronized with race timing and evaluated using the Dartfish software. The swimmer followed a 28-day training program with an Airofit PRO™ respiratory trainer between tests, with daily sessions targeting both inspiratory and expiratory muscles. The training involved 6-10 min of targeted exercises per day. Significant improvements were observed in Wilcoxon's paired-sample test between the pre-test and post-test results in terms of underwater distance (p = 0.012; d = 1.26), underwater time (p = 0.012; d = 1.26), and number of underwater kicks (p = 0.043; d = 1.01), resulting in a 14.23% longer underwater distance, 14.08% longer underwater time, and 14.94% increase in underwater kicks. Despite the increased distance and time, underwater velocity remained stable, indicating improved underwater performance efficiency. Despite some improvements, it is not possible to conclude that respiratory muscle training (RMT) can contribute to improved finswimming performance during the underwater phases of a 200 m bi-fins race simulation in this particular athlete's case. Further research with a larger sample size is necessary to fully understand the impact of RMT on finswimming performance.
See more in PubMed
Boutellier U., Piwko P. The Respiratory System as an Exercise Limiting Factor in Normal Sedentary Subjects. Eur. J. Appl. Physiol. 1992;64:145–152. doi: 10.1007/BF00717952. PubMed DOI
Dempsey J.A. Respiratory Determinants of Exercise Limitation. Clin. Chest Med. 2019;40:331–342. doi: 10.1016/j.ccm.2019.02.002. PubMed DOI PMC
Dickinson J., Hull J., editors. Complete Guide to Respiratory Care in Athletes. Routledge; Abingdon, UK: 2020.
Lomax M., McConnell A. Inspiratory Muscle Fatigue in Swimmers after a Single 200 m Swim. J. Sports Sci. 2003;21:659–664. doi: 10.1080/0264041031000101999. PubMed DOI
McConnell A. Respiratory Muscle Training: Theory and Practice. Churchill Livingstone; Edinburgh, UK: Elsevier; New York, NY, USA: 2013.
Aslan G.K., Huseyinsinoglu B.E., Oflazer P., Gurses N., Kiyan E. Inspiratory Muscle Training in Late-Onset Pompe Disease: The Effects on Pulmonary Function Tests, Quality of Life, and Sleep Quality. Lung. 2016;194:555–561. doi: 10.1007/s00408-016-9881-4. PubMed DOI
Enright S.J., Unnithan V.B. Effect of Inspiratory Muscle Training Intensities on Pulmonary Function and Work Capacity in People Who Are Healthy: A Randomized Controlled Trial. Phys. Ther. 2011;91:894–905. doi: 10.2522/ptj.20090413. PubMed DOI
Jones H.N., Crisp K.D., Robey R.R., Case L.E., Kravitz R.M., Kishnani P.S. Respiratory Muscle Training (RMT) in Late-Onset Pompe Disease (LOPD): Effects of Training and Detraining. Mol. Genet. Metab. 2016;117:120–128. doi: 10.1016/j.ymgme.2015.09.003. PubMed DOI
Lotters F., van Tol B., Kwakkel G., Gosselink R. Effects of Controlled Inspiratory Muscle Training in Patients with COPD: A Meta-Analysis. Eur. Respir. J. 2002;20:570–577. doi: 10.1183/09031936.02.00237402. PubMed DOI
Witt J.D., Guenette J.A., Rupert J.L., McKenzie D.C., Sheel A.W. Inspiratory Muscle Training Attenuates the Human Respiratory Muscle Metaboreflex: Cardiovascular Effects of Training Respiratory Muscle. J. Physiol. 2007;584:1019–1028. doi: 10.1113/jphysiol.2007.140855. PubMed DOI PMC
HajGhanbari B., Yamabayashi C., Buna T.R., Coelho J.D., Freedman K.D., Morton T.A., Palmer S.A., Toy M.A., Walsh C., Sheel A.W., et al. Effects of Respiratory Muscle Training on Performance in Athletes: A Systematic Review With Meta-Analyses. J. Strength Cond. Res. 2013;27:1643–1663. doi: 10.1519/JSC.0b013e318269f73f. PubMed DOI
McConnell A. Breathe Strong, Perform Better. Human Kinetics; Champaign, IL, USA: 2011.
Johnson M.A., Sharpe G.R., Brown P.I. Inspiratory Muscle Training Improves Cycling Time-Trial Performance and Anaerobic Work Capacity but not Critical Power. Eur. J. Appl. Physiol. 2007;101:761–770. doi: 10.1007/s00421-007-0551-3. PubMed DOI
Romer L.M., Mcconnell A.K., Jones D.A. Inspiratory Muscle Fatigue in Trained Cyclists: Effects of Inspiratory Muscle Training. Med. Sci. Sports Exerc. 2002;34:785–792. doi: 10.1097/00005768-200205000-00010. PubMed DOI
Griffiths L.A., McConnell A.K. The Influence of Inspiratory and Expiratory Muscle Training upon Rowing Performance. Eur. J. Appl. Physiol. 2007;99:457–466. doi: 10.1007/s00421-006-0367-6. PubMed DOI
Volianitis S., Mcconnell A.K., Koutedakis Y., Mcnaughton L., Backx K., Jones D.A. Inspiratory Muscle Training Improves Rowing Performance. Med. Sci. Sports Exerc. 2001;33:803–809. doi: 10.1097/00005768-200105000-00020. PubMed DOI
Aspenes S.T., Karlsen T. Exercise-Training Intervention Studies in Competitive Swimming. Sports Med. 2012;42:527–543. doi: 10.2165/11630760-000000000-00000. PubMed DOI
Kilding A.E., Brown S., McConnell A.K. Inspiratory Muscle Training Improves 100 and 200 m Swimming Performance. Eur. J. Appl. Physiol. 2010;108:505–511. doi: 10.1007/s00421-009-1228-x. PubMed DOI
Lemaitre F., Coquart J.B., Chavallard F., Castres I., Mucci P., Costalat G., Chollet D. Effect of Additional Respiratory Muscle Endurance Training in Young Well-Trained Swimmers. J. Sports Sci. Med. 2013;12:630–638. PubMed PMC
Wilson E.E., McKeever T.M., Lobb C., Sherriff T., Gupta L., Hearson G., Martin N., Lindley M.R., Shaw D.E. Respiratory Muscle Specific Warm-Up and Elite Swimming Performance. Br. J. Sports Med. 2014;48:789–791. doi: 10.1136/bjsports-2013-092523. PubMed DOI
Wylegala J.A., Pendergast D.R., Gosselin L.E., Warkander D.E., Lundgren C.E.G. Respiratory Muscle Training Improves Swimming Endurance in Divers. Eur. J. Appl. Physiol. 2007;99:393–404. doi: 10.1007/s00421-006-0359-6. PubMed DOI
Born D.-P., Kuger J., Polach M., Romann M. Start and Turn Performances of Elite Male Swimmers: Benchmarks and Underlying Mechanisms. Sports Biomech. 2021;23:484–502. doi: 10.1080/14763141.2021.1872693. PubMed DOI
Born D.-P., Kuger J., Polach M., Romann M. Turn Fast and Win: The Importance of Acyclic Phases in Top-Elite Female Swimmers. Sports. 2021;9:122. doi: 10.3390/sports9090122. PubMed DOI PMC
Vennell R., Pease D., Wilson B. Wave Drag on Human Swimmers. J. Biomech. 2006;39:664–671. doi: 10.1016/j.jbiomech.2005.01.023. PubMed DOI
Born D.-P., Stöggl T., Petrov A., Burkhardt D., Lüthy F., Romann M. Analysis of Freestyle Swimming Sprint Start Performance After Maximal Strength or Vertical Jump Training in Competitive Female and Male Junior Swimmers. J. Strength Cond. Res. 2020;34:323–331. doi: 10.1519/JSC.0000000000003390. PubMed DOI
Březina J., Polach M., Michalica T., Svozil Z. Effect of Pull-Out Technique on Acyclic Phases in Elite Male 50 m Breaststroke Swimmers. Tělesná Kult. 2022;45:2024091169. doi: 10.5507/tk.2022.005. DOI
Veiga S., Lorenzo J., Trinidad A., Pla R., Fallas-Campos A., de la Rubia A. Kinematic Analysis of the Underwater Undulatory Swimming Cycle: A Systematic and Synthetic Review. Int. J. Environ. Res. Public Health. 2022;19:12196. doi: 10.3390/ijerph191912196. PubMed DOI PMC
Marinho D.A., Barbosa T.M., Neiva H.P., Silva A.J., Morais J.E. Comparison of the Start, Turn and Finish Performance of Elite Swimmers in 100 m and 200 m Races. J. Sports Sci. Med. 2020;19:397–407. PubMed PMC
Morais J.E., Marinho D.A., Arellano R., Barbosa T.M. Start and Turn Performances of Elite Sprinters at the 2016 European Championships in Swimming. Sports Biomech. 2019;18:100–114. doi: 10.1080/14763141.2018.1435713. PubMed DOI
Polach M., Thiel D., Kreník J., Born D.-P. Swimming Turn Performance: The Distinguishing Factor in 1500 m World Championship Freestyle Races? BMC Res. Notes. 2021;14:248. doi: 10.1186/s13104-021-05665-x. PubMed DOI PMC
Taormina S., Gaines R. Swim Speed Strokes for Swimmers and Triathletes: Master Butterfly, Backstroke, Breaststroke, and Freestyle for Your Fastest Swimming. VeloPress; Boulder, CO, USA: 2014.
Michalica T., Polach M., Březina J., Agalliu E. Porovnání Výkonů v Obrátkových Úsecích u Elitních Českých a Světových Plavkyň s Ploutvemi v Disciplínách 100 a 200 Metrů Bi-Fins. Fakulta tělesné kultury; Olomouc, Czech Republic: 2023.
CMAS Finswimming CMAS Rules 2023. [(accessed on 27 January 2024)]. Available online: https://www.cmas.org/document?sessionId=&fileId=5763&language=1.
Gonjo T., Olstad B.H. Race Analysis in Competitive Swimming: A Narrative Review. Int. J. Environ. Res. Public Health. 2020;18:69. doi: 10.3390/ijerph18010069. PubMed DOI PMC
Mador M.J., Rodis A., Magalang U.J. Reproducibility of Borg Scale Measurements of Dyspnea During Exercise in Patients With COPD. Chest. 1995;107:1590–1597. doi: 10.1378/chest.107.6.1590. PubMed DOI
Vázquez-Gandullo E., Hidalgo-Molina A., Montoro-Ballesteros F., Morales-González M., Muñoz-Ramírez I., Arnedillo-Muñoz A. Inspiratory Muscle Training in Patients with Chronic Obstructive Pulmonary Disease (COPD) as Part of a Respiratory Rehabilitation Program Implementation of Mechanical Devices: A Systematic Review. Int. J. Environ. Res. Public Health. 2022;19:5564. doi: 10.3390/ijerph19095564. PubMed DOI PMC
Mackała K., Kurzaj M., Okrzymowska P., Stodółka J., Coh M., Rożek-Piechura K. The Effect of Respiratory Muscle Training on the Pulmonary Function, Lung Ventilation, and Endurance Performance of Young Soccer Players. Int. J. Environ. Res. Public Health. 2019;17:234. doi: 10.3390/ijerph17010234. PubMed DOI PMC
Stavrou V.T., Tourlakopoulos K.N., Daniil Z., Gourgoulianis K.I. Respiratory Muscle Strength: New Technology for Easy Assessment. Cureus. 2021;13:e14803. doi: 10.7759/cureus.14803. PubMed DOI PMC
Borg G. Psychophysical Scaling with Applications in Physical Work and the Perception of Exertion. Scand. J. Work Environ. Health. 1990;16:55–58. doi: 10.5271/sjweh.1815. PubMed DOI
Crisafulli E., Clini E.M. Measures of Dyspnea in Pulmonary Rehabilitation. Multidiscip. Respir. Med. 2010;5:202. doi: 10.1186/2049-6958-5-3-202. PubMed DOI PMC
Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; London, UK: 2013. DOI
Figueiredo P., Rouard A., Vilas-Boas J.P., Fernandes R.J. Upper and Lower Limb Muscular Fatigue during the 200-m Front Crawl. Appl. Physiol. Nutr. Metab. 2013;38:716–724. doi: 10.1139/apnm-2012-0263. PubMed DOI
Veiga S., Cala A., Mallo J., Navarro E. A New Procedure for Race Analysis in Swimming Based on Individual Distance Measurements. J. Sports Sci. 2013;31:159–165. doi: 10.1080/02640414.2012.723130. PubMed DOI
Cavalcante Silva R.L., Hall E., Maior A.S. Inspiratory Muscle Training Improves Performance of a Repeated Sprints Ability Test in Professional Soccer Players. J. Bodyw. Mov. Ther. 2019;23:452–455. doi: 10.1016/j.jbmt.2019.01.016. PubMed DOI
Vašíčková J., Neumannová K., Svozil Z. The Effect of Respiratory Muscle Training on Fin-Swimmers’ Performance. J. Sports Sci. Med. 2017;16:521–526. PubMed PMC
Sheel A.W., Derchak P.A., Pegelow D.F., Dempsey J.A. Threshold Effects of Respiratory Muscle Work on Limb Vascular Resistance. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H1732–H1738. doi: 10.1152/ajpheart.00798.2001. PubMed DOI
Courteix D., Obert P., Lecoq A.-M., Guenon P., Koch G. Effect of Intensive Swimming Training on Lung Volumes, Airway Resistances and on the Maximal Expiratory Flow-Volume Relationship in Prepubertal Girls. Eur. J. Appl. Physiol. 1997;76:264–269. doi: 10.1007/s004210050246. PubMed DOI
Cordain L., Stager J. Pulmonary Structure and Function in Swimmers. Sports Med. 1988;6:271–278. doi: 10.2165/00007256-198806050-00002. PubMed DOI
Mickleborough T.D., Stager J.M., Chatham K., Lindley M.R., Ionescu A.A. Pulmonary Adaptations to Swim and Inspiratory Muscle Training. Eur. J. Appl. Physiol. 2008;103:635–646. doi: 10.1007/s00421-008-0759-x. PubMed DOI
Rodríguez F.A. Maximal Oxygen Uptake and Cardiorespiratory Response to Maximal 400-m Free Swimming, Running and Cycling Tests in Competitive Swimmers. J. Sports Med. Phys. Fitness. 2000;40:87–95. PubMed
Dopsaj M., Zuoziene I.J., Milić R., Cherepov E., Erlikh V., Masiulis N., di Nino A., Vodičar J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health. 2020;17:9464. doi: 10.3390/ijerph17249464. PubMed DOI PMC