Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment

. 2024 Nov 16 ; 24 (22) : . [epub] 20241116

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39599107

Individual physiotherapy is crucial in treating patients with various pain and health issues, and significantly impacts abdominal surgical outcomes and further medical problems. Recent technological and artificial intelligent advancements have equipped healthcare professionals with innovative tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to monitor and analyze patients' physical activity. This paper investigates the potential applications of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive computational methodology is introduced, incorporating traditional digital signal processing, feature extraction in both time and transform domains, and advanced classification techniques. The study employs a range of machine learning methods, including support vector machines, Bayesian analysis, and neural networks, to evaluate the balance of various physical activities. The proposed approach achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion patterns by employing features from both the time and frequency domains using a two-layer neural network. These findings demonstrate promising applications of precise monitoring of rehabilitation exercises to increase the probability of successful surgical recovery, highlighting the potential to significantly enhance patient care and treatment outcomes.

Zobrazit více v PubMed

Gomaa W., Khamis M. A perspective on human activity recognition from inertial motion data. Neural Comput. Appl. 2023;35:20463–20568. doi: 10.1007/s00521-023-08863-9. DOI

Xu Z., Wu Z., Wang L., Ma Z., Deng J., Sha H., Wang H. Research on Monitoring Assistive Devices for Rehabilitation of Movement Disorders through Multi-Sensor Analysis Combined with Deep Learning. Sensors. 2024;24:4273. doi: 10.3390/s24134273. PubMed DOI PMC

Wei S., Wu Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors. 2023;23:7667. doi: 10.3390/s23187667. PubMed DOI PMC

Carnevale A., Longo U., Schena E., Massaroni C., Lo Presti C., Berton A., Candela V., Denaro V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019;20:546. doi: 10.1186/s12891-019-2930-4. PubMed DOI PMC

Grimes L., Outtrim J., Griffin S., Ercole A. Accelerometery as a measure of modifiable physical activity in high- risk elderly preoperative patients: A prospective observational pilot study. BMJ Open. 2019;9:e032346. doi: 10.1136/bmjopen-2019-032346. PubMed DOI PMC

Regterschot G., Ribbers G., Bussmann J. Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice. Sensors. 2021;23:4744. doi: 10.3390/s21144744. PubMed DOI PMC

Syversen A., Dosis A., Jayne D., Zhang Z. Wearable Sensors as a Preoperative Assessment Tool: A Review. Sensors. 2024;24:482. doi: 10.3390/s24020482. PubMed DOI PMC

McIsaac D., Gill M., Boland L., Hutton B., Branje K., Shaw J., Grudzinski A., Barone N., Gillis C. Prehabilitation in adult patients undergoing surgery: An umbrella review of systematic reviews. Br. J. Anaesth. 2022;128:244–257. doi: 10.1016/j.bja.2021.11.014. PubMed DOI

Master H., Bley J., Coronado R., Robinette P., White D., Pennings J., Archer K. Effects of physical activity interventions using wearables to improve objectively-measured and patient-reported outcomes in adults following orthopaedic surgical procedures: A systematic review. PLoS ONE. 2022;17:e0263562. doi: 10.1371/journal.pone.0263562. PubMed DOI PMC

Adams S., Bedwani N., Massey L., Bhargava A., Byrne C., Jensen K., Smart N., Walsh C. Physical activity recommendations pre and post abdominal wall reconstruction: A scoping review of the evidence. Hernia. 2022;26:701–714. doi: 10.1007/s10029-022-02562-5. PubMed DOI

Ayuso S., Elhage S., Zhang Y., Aladegbami B., Gersin K., Fischer J., Augenstein V., Colavita P., Heniford B. Predicting rare outcomes in abdominal wall reconstruction using image-based deep learning model. Surgery. 2023;173:748–755. doi: 10.1016/j.surg.2022.06.048. PubMed DOI

Timmer A., Claessen J., Boermeester M. Risk Factor-Driven Prehabilitation Prior to Abdominal Wall Reconstruction to Improve Postoperative Outcome. A Narrative Review. J. Abdom. Wall Surg. 2022;1:10722. doi: 10.3389/jaws.2022.10722. PubMed DOI PMC

Kamarajah S., Bundred J., Weblin J., Tan B. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: A systematic review and meta-analysis. Surgery. 2020;167:540–549. doi: 10.1016/j.surg.2019.07.032. PubMed DOI

Hughes M., Hackney R., Lamb P., Wigmore S., Deans D., Skipworth R. Prehabilitation Before Major Abdominal Surgery: A Systematic Review and Meta-analysis. World J. Surg. 2019;43:1661–1668. doi: 10.1007/s00268-019-04950-y. PubMed DOI

Liao Y., Vakanski A., Xian M., Paul D., Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Comput. Biol. Med. 2020;119:721. doi: 10.1016/j.compbiomed.2020.103687. PubMed DOI PMC

Jeske P., Wojtera B., Banasiewicz T. Prehabilitation-Current Role in Surgery. Pol. J. Surg. 2022;94:65–72. doi: 10.5604/01.3001.0015.7340. DOI

Pan H., Wang H., Li D., Zhu K., Gao Y., Yin R., Shull P. Automated, IMU-based spine angle estimation and IMU location identification for telerehabilitation. Neural Comput. Appl. 2024;21:96. doi: 10.1186/s12984-024-01366-1. PubMed DOI PMC

Lee A., Deutsch J., Holdsworth L., Kaplan S., Kosakowski H., Latz R., McNeary L., O’Neil J., Ronzio O., Sanders K., et al. Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline From the American Physical Therapy Association. Phys. Ther. 2024;104:pzae045. doi: 10.1093/ptj/pzae045. PubMed DOI PMC

Abouelnaga W., Aboelnour N. Effectiveness of Active Rehabilitation Program on Sports Hernia: Randomized Control Trial. Ann. Rehabil. Med. 2019;43:305–313. doi: 10.5535/arm.2019.43.3.305. PubMed DOI PMC

Gillis C., Ljungqvist O., Carli F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br. J. Anaesth. 2022;128:434–448. doi: 10.1016/j.bja.2021.12.007. PubMed DOI

Vutan A., Lovasz E., Gruescu C., Sticlaru C., Sirbu E., Jurjiu N., Borozan I., Vutan C. Evaluation of Symmetrical Exercises in Scoliosis by Using Thermal Scanning. Appl. Sci. 2022;12:721. doi: 10.3390/app12020721. DOI

Whelan D., O’Reilly M., Ward T., Delahunt E., Caulfield B. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units. Methods Inf. Med. 2017;56:88–94. PubMed

Basil G., Sprau A., Eliahu K., Borowsky P., Wang M., Jang W. Using Smartphone-Based Accelerometer Data to Objectively Assess Outcomes in Spine Surgery. Neurosurgery. 2021;88:763–772. doi: 10.1093/neuros/nyaa505. PubMed DOI

Wang X., Yu H., Kold S., Rahbek O., Bai S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023;3:100089. doi: 10.1016/j.birob.2023.100089. DOI

Huang X., Xue Y., Ren S., Wang F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. Sensors. 2023;23:9047. doi: 10.3390/s23229047. PubMed DOI PMC

Prat-Luri A., Moreno-Navarro P., Carpenac C., Manca A., Deriu F., Barbado D., Vera-Garcia F. Smartphone accelerometry for quantifying core stability and developing exercise training progressions in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023;72:104618. doi: 10.1016/j.msard.2023.104618. PubMed DOI

Renshaw S., Peterson R., Lewis R., Olson M., Henderson W., Kreuz B., Poulose B., Higgins R. Acceptability and barriers to adopting physical therapy and rehabilitation as standard of care in hernia disease: A prospective national survey of providers and preliminary data. Hernia. 2022;26:865–871. doi: 10.1007/s10029-022-02606-w. PubMed DOI

Perez J., Schmidt M., Narvaez A., Welsh L., Diaz R., Castro M., Ansari K., Cason R., Bilezikian J., Hope W., et al. Evolving concepts in ventral hernia repair and physical therapy: Prehabilitation, rehabilitation, and analogies to tendon reconstruction. Hernia. 2021;25:1–13. doi: 10.1007/s10029-020-02304-5. PubMed DOI

Novak J., Busch A., Kolar P., Kobesova A. Postural and respiratory function of the abdominal muscles: A pilot study to measure abdominal wall activity using belt sensors. Isokinet. Exerc. Sci. 2021;29:175–184. doi: 10.3233/IES-203212. DOI

Procházka A., Vyšata O., Mařík V. Integrating the Role of Computational Intelligence and Digital Signal Processing in Education. IEEE Signal Process. Mag. 2021;38:154–162. doi: 10.1109/MSP.2021.3058634. DOI

Procházka A., Dostál O., Cejnar P., Mohamed H., Pavelek Z., Vališ M., Vyšata O. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2021;29:33434133. doi: 10.1109/TNSRE.2021.3051093. PubMed DOI

Brennan L., Bevilacqua A., Kechadi T., Caulfield B. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems. J. Rehabil. Assist. Technol. Eng. 2020;7:2055668320915377. doi: 10.1177/2055668320915377. PubMed DOI PMC

Alfakir A., Arrowsmith C., Burns D., Razmjou H., Hardisty M., Whyne C. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation. JMIR Rehabil. Assist. Technol. 2022;9:e38689. doi: 10.2196/38689. PubMed DOI PMC

Prochazka A., Schatz M., Tupa O., Yadollahi M., Vysata O., Valis M. The MS Kinect Image and Depth Sensors Use for Gait Features Detection; Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP); Paris, France. 27–30 October 2014; pp. 2271–2274.

Shah N., Aleong R., So I. Novel Use of a Smartphone to Measure Standing Balance. JMIR Rehabil. Assist. Technol. 2016;3:e4. doi: 10.2196/rehab.4511. PubMed DOI PMC

Skovbjerg F., Honoré H., Mechlenburg I., Lipperts M., Gade R., Naess-Schmidt E. Monitoring Physical Behavior in Rehabilitation Using a Machine Learning–Based Algorithm for Thigh-Mounted Accelerometers: Development and Validation Study. JMIR Bioinform. Biotechnol. 2022;3:e38512. doi: 10.2196/38512. PubMed DOI PMC

Gu C., Lin W., He X., Zhang L., Zhang M. IMU-based motion capture system for rehabilitation applications: A systematic review. Biomim. Intell. Robot. 2023;3:100097. doi: 10.1016/j.birob.2023.100097. DOI

Janáková D. Master’s Thesis. Charles University; Prague, Czech Republic: 2021. Foot and Ankle Kinematics in Patients with Femoroacetabular Impingement Syndrome.

Wouters D., Cavallaro G., Jensen K., East B., Jíšová B., Jorgensen L., López-Cano M., Rodrigues-Gonçalves V., Stabilini C., Berrevoet F. The European Hernia Society Prehabilitation Project: A Systematic Review of Intra-Operative Prevention Strategies for Surgical Site Occurrences in Ventral Hernia Surgery. Front. Surg. 2022;13:847279. doi: 10.3389/fsurg.2022.847279. PubMed DOI PMC

Ciomperlik H., Dhanani N., Cassata N., Mohr C., Bernardi K., Holihan J., Lyons N., Olavarria O., Ko T., Liang M. Patient quality of life before and after ventral hernia repair. Surgery. 2020;169:1158–1163. doi: 10.1016/j.surg.2020.11.003. PubMed DOI

See C., Kim T., Zhu D. Hernia Mesh and Hernia Repair: A Review. Eng. Regen. 2020;1:19–33.

Qabbani A., Aboumarzouk O., El Bakry T., Al-Ansari A., Elakkad M. Robotic inguinal hernia repair: Systematic review and meta-analysis. ANZ J. Surg. 2021;91:2277–2287. doi: 10.1111/ans.16505. PubMed DOI

Boukili I., Flaris A., Mercier F., Cotte E., Kepenekian V., Vaudoyer D., Passot G. Prehabilitation before major abdominal surgery: Evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 2022;111:14574969221083394. doi: 10.1177/14574969221083394. PubMed DOI

Cvetkovic B., Szeklicki R., Janko V., Lutomski P., Luštrek M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion. 2018;43:77–93. doi: 10.1016/j.inffus.2017.05.004. DOI

Heredia-Elvar J., Juan-Recio C., Prat-Luri A., Barbado D., Vera-Garcia F. Observational Screening Guidelines and Smartphone Accelerometer Thresholds to Establish the Intensity of Some of the Most Popular Core Stability Exercises. Front. Physiol. 2021;12:751569. doi: 10.3389/fphys.2021.751569. PubMed DOI PMC

Procházka A. Rehabilitation Exercises and Computational Intelligence. Dataset, IEEE DataPort. 2024. [(accessed on 4 August 2024)]. Available online: https://ieee-dataport.org/documents/rehabilitation-exercises-and-computational-intelligence.

Dostál O., Procházka A., Vyšata O., Ťupa O., Cejnar P., Vališ M. Recognition of Motion Patterns Using Accelerometers for Ataxic Gait Assessment. Neural Comput. Appl. 2021;33:2207–2215. doi: 10.1007/s00521-020-05103-2. DOI

Procházka A., Vyšata O., Ťupa O., Mareš J., Vališ M. Discrimination of Axonal Neuropathy Using Sensitivity and Specificity Statistical Measures. Neural Comput. Appl. 2014;25:1349–1358. doi: 10.1007/s00521-014-1622-0. DOI

Martynek D. Mgr Thesis. University of Chemistry and Technology; Prague, Czech Republic: 2024. Analysis of Rehabilitation Exercises Using Mobile Sensors.

Martynek D. Rehabilitation Data Analysis and Processing. WWW Page, University of Chemistry and Technology, Prague, Czech Republic. 2024. [(accessed on 4 August 2024)]. Available online: https://danielmartynekdp.pythonanywhere.com/

Procházka A., Vyšata O., Vališ M., Ťupa O., Schatz M., Mařík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015;47:169–177. doi: 10.1016/j.dsp.2015.05.011. DOI

Magris M., Iosifidis A. Bayesian learning for neural networks: An algorithmic survey. Artif. Intell. Rev. 2023;56:11773–11823. doi: 10.1007/s10462-023-10443-1. DOI

Goh E., Ali T. Robotic surgery: An evolution in practice. J. Surg. Protoc. Res. Methodol. 2022;2022:snac003. doi: 10.1093/jsprm/snac003. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...