Mobile Accelerometer Applications in Core Muscle Rehabilitation and Pre-Operative Assessment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39599107
PubMed Central
PMC11598069
DOI
10.3390/s24227330
PII: s24227330
Knihovny.cz E-zdroje
- Klíčová slova
- abdominal wall repair, accelerometers, computational intelligence, machine learning, motion symmetry, physical activity monitoring, rehabilitation,
- MeSH
- akcelerometrie * metody MeSH
- Bayesova věta MeSH
- cvičení fyziologie MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mobilní aplikace MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu MeSH
- senioři MeSH
- strojové učení MeSH
- support vector machine MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Individual physiotherapy is crucial in treating patients with various pain and health issues, and significantly impacts abdominal surgical outcomes and further medical problems. Recent technological and artificial intelligent advancements have equipped healthcare professionals with innovative tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to monitor and analyze patients' physical activity. This paper investigates the potential applications of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive computational methodology is introduced, incorporating traditional digital signal processing, feature extraction in both time and transform domains, and advanced classification techniques. The study employs a range of machine learning methods, including support vector machines, Bayesian analysis, and neural networks, to evaluate the balance of various physical activities. The proposed approach achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion patterns by employing features from both the time and frequency domains using a two-layer neural network. These findings demonstrate promising applications of precise monitoring of rehabilitation exercises to increase the probability of successful surgical recovery, highlighting the potential to significantly enhance patient care and treatment outcomes.
Zobrazit více v PubMed
Gomaa W., Khamis M. A perspective on human activity recognition from inertial motion data. Neural Comput. Appl. 2023;35:20463–20568. doi: 10.1007/s00521-023-08863-9. DOI
Xu Z., Wu Z., Wang L., Ma Z., Deng J., Sha H., Wang H. Research on Monitoring Assistive Devices for Rehabilitation of Movement Disorders through Multi-Sensor Analysis Combined with Deep Learning. Sensors. 2024;24:4273. doi: 10.3390/s24134273. PubMed DOI PMC
Wei S., Wu Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors. 2023;23:7667. doi: 10.3390/s23187667. PubMed DOI PMC
Carnevale A., Longo U., Schena E., Massaroni C., Lo Presti C., Berton A., Candela V., Denaro V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019;20:546. doi: 10.1186/s12891-019-2930-4. PubMed DOI PMC
Grimes L., Outtrim J., Griffin S., Ercole A. Accelerometery as a measure of modifiable physical activity in high- risk elderly preoperative patients: A prospective observational pilot study. BMJ Open. 2019;9:e032346. doi: 10.1136/bmjopen-2019-032346. PubMed DOI PMC
Regterschot G., Ribbers G., Bussmann J. Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice. Sensors. 2021;23:4744. doi: 10.3390/s21144744. PubMed DOI PMC
Syversen A., Dosis A., Jayne D., Zhang Z. Wearable Sensors as a Preoperative Assessment Tool: A Review. Sensors. 2024;24:482. doi: 10.3390/s24020482. PubMed DOI PMC
McIsaac D., Gill M., Boland L., Hutton B., Branje K., Shaw J., Grudzinski A., Barone N., Gillis C. Prehabilitation in adult patients undergoing surgery: An umbrella review of systematic reviews. Br. J. Anaesth. 2022;128:244–257. doi: 10.1016/j.bja.2021.11.014. PubMed DOI
Master H., Bley J., Coronado R., Robinette P., White D., Pennings J., Archer K. Effects of physical activity interventions using wearables to improve objectively-measured and patient-reported outcomes in adults following orthopaedic surgical procedures: A systematic review. PLoS ONE. 2022;17:e0263562. doi: 10.1371/journal.pone.0263562. PubMed DOI PMC
Adams S., Bedwani N., Massey L., Bhargava A., Byrne C., Jensen K., Smart N., Walsh C. Physical activity recommendations pre and post abdominal wall reconstruction: A scoping review of the evidence. Hernia. 2022;26:701–714. doi: 10.1007/s10029-022-02562-5. PubMed DOI
Ayuso S., Elhage S., Zhang Y., Aladegbami B., Gersin K., Fischer J., Augenstein V., Colavita P., Heniford B. Predicting rare outcomes in abdominal wall reconstruction using image-based deep learning model. Surgery. 2023;173:748–755. doi: 10.1016/j.surg.2022.06.048. PubMed DOI
Timmer A., Claessen J., Boermeester M. Risk Factor-Driven Prehabilitation Prior to Abdominal Wall Reconstruction to Improve Postoperative Outcome. A Narrative Review. J. Abdom. Wall Surg. 2022;1:10722. doi: 10.3389/jaws.2022.10722. PubMed DOI PMC
Kamarajah S., Bundred J., Weblin J., Tan B. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: A systematic review and meta-analysis. Surgery. 2020;167:540–549. doi: 10.1016/j.surg.2019.07.032. PubMed DOI
Hughes M., Hackney R., Lamb P., Wigmore S., Deans D., Skipworth R. Prehabilitation Before Major Abdominal Surgery: A Systematic Review and Meta-analysis. World J. Surg. 2019;43:1661–1668. doi: 10.1007/s00268-019-04950-y. PubMed DOI
Liao Y., Vakanski A., Xian M., Paul D., Baker R. A review of computational approaches for evaluation of rehabilitation exercises. Comput. Biol. Med. 2020;119:721. doi: 10.1016/j.compbiomed.2020.103687. PubMed DOI PMC
Jeske P., Wojtera B., Banasiewicz T. Prehabilitation-Current Role in Surgery. Pol. J. Surg. 2022;94:65–72. doi: 10.5604/01.3001.0015.7340. DOI
Pan H., Wang H., Li D., Zhu K., Gao Y., Yin R., Shull P. Automated, IMU-based spine angle estimation and IMU location identification for telerehabilitation. Neural Comput. Appl. 2024;21:96. doi: 10.1186/s12984-024-01366-1. PubMed DOI PMC
Lee A., Deutsch J., Holdsworth L., Kaplan S., Kosakowski H., Latz R., McNeary L., O’Neil J., Ronzio O., Sanders K., et al. Telerehabilitation in Physical Therapist Practice: A Clinical Practice Guideline From the American Physical Therapy Association. Phys. Ther. 2024;104:pzae045. doi: 10.1093/ptj/pzae045. PubMed DOI PMC
Abouelnaga W., Aboelnour N. Effectiveness of Active Rehabilitation Program on Sports Hernia: Randomized Control Trial. Ann. Rehabil. Med. 2019;43:305–313. doi: 10.5535/arm.2019.43.3.305. PubMed DOI PMC
Gillis C., Ljungqvist O., Carli F. Prehabilitation, enhanced recovery after surgery, or both? A narrative review. Br. J. Anaesth. 2022;128:434–448. doi: 10.1016/j.bja.2021.12.007. PubMed DOI
Vutan A., Lovasz E., Gruescu C., Sticlaru C., Sirbu E., Jurjiu N., Borozan I., Vutan C. Evaluation of Symmetrical Exercises in Scoliosis by Using Thermal Scanning. Appl. Sci. 2022;12:721. doi: 10.3390/app12020721. DOI
Whelan D., O’Reilly M., Ward T., Delahunt E., Caulfield B. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units. Methods Inf. Med. 2017;56:88–94. PubMed
Basil G., Sprau A., Eliahu K., Borowsky P., Wang M., Jang W. Using Smartphone-Based Accelerometer Data to Objectively Assess Outcomes in Spine Surgery. Neurosurgery. 2021;88:763–772. doi: 10.1093/neuros/nyaa505. PubMed DOI
Wang X., Yu H., Kold S., Rahbek O., Bai S. Wearable sensors for activity monitoring and motion control: A review. Biomim. Intell. Robot. 2023;3:100089. doi: 10.1016/j.birob.2023.100089. DOI
Huang X., Xue Y., Ren S., Wang F. Sensor-Based Wearable Systems for Monitoring Human Motion and Posture: A Review. Sensors. 2023;23:9047. doi: 10.3390/s23229047. PubMed DOI PMC
Prat-Luri A., Moreno-Navarro P., Carpenac C., Manca A., Deriu F., Barbado D., Vera-Garcia F. Smartphone accelerometry for quantifying core stability and developing exercise training progressions in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2023;72:104618. doi: 10.1016/j.msard.2023.104618. PubMed DOI
Renshaw S., Peterson R., Lewis R., Olson M., Henderson W., Kreuz B., Poulose B., Higgins R. Acceptability and barriers to adopting physical therapy and rehabilitation as standard of care in hernia disease: A prospective national survey of providers and preliminary data. Hernia. 2022;26:865–871. doi: 10.1007/s10029-022-02606-w. PubMed DOI
Perez J., Schmidt M., Narvaez A., Welsh L., Diaz R., Castro M., Ansari K., Cason R., Bilezikian J., Hope W., et al. Evolving concepts in ventral hernia repair and physical therapy: Prehabilitation, rehabilitation, and analogies to tendon reconstruction. Hernia. 2021;25:1–13. doi: 10.1007/s10029-020-02304-5. PubMed DOI
Novak J., Busch A., Kolar P., Kobesova A. Postural and respiratory function of the abdominal muscles: A pilot study to measure abdominal wall activity using belt sensors. Isokinet. Exerc. Sci. 2021;29:175–184. doi: 10.3233/IES-203212. DOI
Procházka A., Vyšata O., Mařík V. Integrating the Role of Computational Intelligence and Digital Signal Processing in Education. IEEE Signal Process. Mag. 2021;38:154–162. doi: 10.1109/MSP.2021.3058634. DOI
Procházka A., Dostál O., Cejnar P., Mohamed H., Pavelek Z., Vališ M., Vyšata O. Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Trans. Neural Syst. Rehabil. Eng. 2021;29:33434133. doi: 10.1109/TNSRE.2021.3051093. PubMed DOI
Brennan L., Bevilacqua A., Kechadi T., Caulfield B. Segmentation of shoulder rehabilitation exercises for single and multiple inertial sensor systems. J. Rehabil. Assist. Technol. Eng. 2020;7:2055668320915377. doi: 10.1177/2055668320915377. PubMed DOI PMC
Alfakir A., Arrowsmith C., Burns D., Razmjou H., Hardisty M., Whyne C. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation. JMIR Rehabil. Assist. Technol. 2022;9:e38689. doi: 10.2196/38689. PubMed DOI PMC
Prochazka A., Schatz M., Tupa O., Yadollahi M., Vysata O., Valis M. The MS Kinect Image and Depth Sensors Use for Gait Features Detection; Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP); Paris, France. 27–30 October 2014; pp. 2271–2274.
Shah N., Aleong R., So I. Novel Use of a Smartphone to Measure Standing Balance. JMIR Rehabil. Assist. Technol. 2016;3:e4. doi: 10.2196/rehab.4511. PubMed DOI PMC
Skovbjerg F., Honoré H., Mechlenburg I., Lipperts M., Gade R., Naess-Schmidt E. Monitoring Physical Behavior in Rehabilitation Using a Machine Learning–Based Algorithm for Thigh-Mounted Accelerometers: Development and Validation Study. JMIR Bioinform. Biotechnol. 2022;3:e38512. doi: 10.2196/38512. PubMed DOI PMC
Gu C., Lin W., He X., Zhang L., Zhang M. IMU-based motion capture system for rehabilitation applications: A systematic review. Biomim. Intell. Robot. 2023;3:100097. doi: 10.1016/j.birob.2023.100097. DOI
Janáková D. Master’s Thesis. Charles University; Prague, Czech Republic: 2021. Foot and Ankle Kinematics in Patients with Femoroacetabular Impingement Syndrome.
Wouters D., Cavallaro G., Jensen K., East B., Jíšová B., Jorgensen L., López-Cano M., Rodrigues-Gonçalves V., Stabilini C., Berrevoet F. The European Hernia Society Prehabilitation Project: A Systematic Review of Intra-Operative Prevention Strategies for Surgical Site Occurrences in Ventral Hernia Surgery. Front. Surg. 2022;13:847279. doi: 10.3389/fsurg.2022.847279. PubMed DOI PMC
Ciomperlik H., Dhanani N., Cassata N., Mohr C., Bernardi K., Holihan J., Lyons N., Olavarria O., Ko T., Liang M. Patient quality of life before and after ventral hernia repair. Surgery. 2020;169:1158–1163. doi: 10.1016/j.surg.2020.11.003. PubMed DOI
See C., Kim T., Zhu D. Hernia Mesh and Hernia Repair: A Review. Eng. Regen. 2020;1:19–33.
Qabbani A., Aboumarzouk O., El Bakry T., Al-Ansari A., Elakkad M. Robotic inguinal hernia repair: Systematic review and meta-analysis. ANZ J. Surg. 2021;91:2277–2287. doi: 10.1111/ans.16505. PubMed DOI
Boukili I., Flaris A., Mercier F., Cotte E., Kepenekian V., Vaudoyer D., Passot G. Prehabilitation before major abdominal surgery: Evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 2022;111:14574969221083394. doi: 10.1177/14574969221083394. PubMed DOI
Cvetkovic B., Szeklicki R., Janko V., Lutomski P., Luštrek M. Real-time activity monitoring with a wristband and a smartphone. Inf. Fusion. 2018;43:77–93. doi: 10.1016/j.inffus.2017.05.004. DOI
Heredia-Elvar J., Juan-Recio C., Prat-Luri A., Barbado D., Vera-Garcia F. Observational Screening Guidelines and Smartphone Accelerometer Thresholds to Establish the Intensity of Some of the Most Popular Core Stability Exercises. Front. Physiol. 2021;12:751569. doi: 10.3389/fphys.2021.751569. PubMed DOI PMC
Procházka A. Rehabilitation Exercises and Computational Intelligence. Dataset, IEEE DataPort. 2024. [(accessed on 4 August 2024)]. Available online: https://ieee-dataport.org/documents/rehabilitation-exercises-and-computational-intelligence.
Dostál O., Procházka A., Vyšata O., Ťupa O., Cejnar P., Vališ M. Recognition of Motion Patterns Using Accelerometers for Ataxic Gait Assessment. Neural Comput. Appl. 2021;33:2207–2215. doi: 10.1007/s00521-020-05103-2. DOI
Procházka A., Vyšata O., Ťupa O., Mareš J., Vališ M. Discrimination of Axonal Neuropathy Using Sensitivity and Specificity Statistical Measures. Neural Comput. Appl. 2014;25:1349–1358. doi: 10.1007/s00521-014-1622-0. DOI
Martynek D. Mgr Thesis. University of Chemistry and Technology; Prague, Czech Republic: 2024. Analysis of Rehabilitation Exercises Using Mobile Sensors.
Martynek D. Rehabilitation Data Analysis and Processing. WWW Page, University of Chemistry and Technology, Prague, Czech Republic. 2024. [(accessed on 4 August 2024)]. Available online: https://danielmartynekdp.pythonanywhere.com/
Procházka A., Vyšata O., Vališ M., Ťupa O., Schatz M., Mařík V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Prog. 2015;47:169–177. doi: 10.1016/j.dsp.2015.05.011. DOI
Magris M., Iosifidis A. Bayesian learning for neural networks: An algorithmic survey. Artif. Intell. Rev. 2023;56:11773–11823. doi: 10.1007/s10462-023-10443-1. DOI
Goh E., Ali T. Robotic surgery: An evolution in practice. J. Surg. Protoc. Res. Methodol. 2022;2022:snac003. doi: 10.1093/jsprm/snac003. DOI