• This record comes from PubMed

The Digital Revolution in Medicine: Applications in Cardio-Oncology

. 2025 Dec ; 27 (1) : . [epub] 20241105

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
KL2 TR001438 NCATS NIH HHS - United States
UL1 TR001436 NCATS NIH HHS - United States

PURPOSE OF REVIEW: A critical evaluation of contemporary literature regarding the role of big data, artificial intelligence, and digital technologies in precision cardio-oncology care and survivorship, emphasizing innovative and groundbreaking endeavors. RECENT FINDINGS: Artificial intelligence (AI) algorithm models can automate the risk assessment process and augment current subjective clinical decision tools. AI, particularly machine learning (ML), can identify medically significant patterns in large data sets. Machine learning in cardio-oncology care has great potential in screening, diagnosis, monitoring, and managing cancer therapy-related cardiovascular complications. To this end, large-scale imaging data and clinical information are being leveraged in training efficient AI algorithms that may lead to effective clinical tools for caring for this vulnerable population. Telemedicine may benefit cardio-oncology patients by enhancing healthcare delivery through lowering costs, improving quality, and personalizing care. Similarly, the utilization of wearable biosensors and mobile health technology for remote monitoring holds the potential to improve cardio-oncology outcomes through early intervention and deeper clinical insight. Investigations are ongoing regarding the application of digital health tools such as telemedicine and remote monitoring devices in enhancing the functional status and recovery of cancer patients, particularly those with limited access to centralized services, by increasing physical activity levels and providing access to rehabilitation services. SUMMARY: In recent years, advances in cancer survival have increased the prevalence of patients experiencing cancer therapy-related cardiovascular complications. Traditional cardio-oncology risk categorization largely relies on basic clinical features and physician assessment, necessitating advancements in machine learning to create objective prediction models using diverse data sources. Healthcare disparities may be perpetuated through AI algorithms in digital health technologies. In turn, this may have a detrimental effect on minority populations by limiting resource allocation. Several AI-powered innovative health tools could be leveraged to bridge the digital divide and improve access to equitable care.

See more in PubMed

Sturgeon KM, Deng L, Bluethmann SM, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. European Heart Journal. 2019;40(48):3889–3897. doi:10.1093/eurheartj/ehz766 PubMed DOI PMC

Ballester PJ, Carmona J. Artificial intelligence for the next generation of precision oncology. npj Precision Oncology. 2021-August-18 2021;5(1)doi:10.1038/s41698-021-00216-w PubMed DOI PMC

Russell SJ. Artificial intelligence a modern approach. Pearson Education, Inc.; 2010.

Richardson S, Lawrence K, Schoenthaler AM, Mann D. A framework for digital health equity. npj Digital Medicine. 2022-August-18 2022;5(1)doi:10.1038/s41746-022-00663-0 PubMed DOI PMC

De Cannière H, Smeets CJP, Schoutteten M, et al. Using Biosensors and Digital Biomarkers to Assess Response to Cardiac Rehabilitation: Observational Study. J Med Internet Res. May 20 2020;22(5):e17326. doi:10.2196/17326 PubMed DOI PMC

Kappel C, Rushton-Marovac M, Leong D, Dent S. Pursuing Connectivity in Cardio-Oncology Care-The Future of Telemedicine and Artificial Intelligence in Providing Equity and Access to Rural Communities. Front Cardiovasc Med. 2022;9:927769. doi:10.3389/fcvm.2022.927769 PubMed DOI PMC

Chen H, Ouyang D, Baykaner T, Jamal F, Cheng P, Rhee JW. Artificial intelligence applications in cardio-oncology: Leveraging high dimensional cardiovascular data. Front Cardiovasc Med. 2022;9:941148. doi:10.3389/fcvm.2022.941148 PubMed DOI PMC

Dey D, Slomka PJ, Leeson P, et al. Artificial Intelligence in Cardiovascular Imaging. Journal of the American College of Cardiology. 2019-March-01 2019;73(11):1317–1335. doi:10.1016/j.jacc.2018.12.054 PubMed DOI PMC

Sadler D, Okwuosa T, Teske AJ, et al. Cardio oncology: Digital innovations, precision medicine and health equity. Front Cardiovasc Med. 2022;9:951551. doi:10.3389/fcvm.2022.951551 PubMed DOI PMC

Leong DP, Mukherjee SD. The European Society of Cardiology Cardio-Oncology Guidelines: Evidence Base, Actionability, and Relevance to Clinical Practice. JACC CardioOncol. Feb 2023;5(1):137–140. doi:10.1016/j.jaccao.2022.10.009 PubMed DOI PMC

Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr., et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity: The CECCY Trial. J Am Coll Cardiol. May 22 2018;71(20):2281–2290. doi:10.1016/j.jacc.2018.02.049 PubMed DOI

Brown SA, Okwuosa TM, Barac A, Volgman AS. The Role of Angiotensin-Converting Enzyme Inhibitors and β-Blockers in Primary Prevention of Cardiac Dysfunction in Breast Cancer Patients. J Am Heart Assoc. Jan 21 2020;9(2):e015327. doi:10.1161/jaha.119.015327 PubMed DOI PMC

Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. Dec 5 2006;114(23):2474–81. doi:10.1161/circulationaha.106.635144 PubMed DOI

Austin D. PROACT: Can we prevent chemotherapy-related heart damage in patients with breast cancer and lymphoma? . Accessed August 27, 2024, https://clinicaltrialresults.org/dr-david-austin-and-dr-c-michael-gibson-discuss-preventing-cardiac-damage-in-patients-treated-for-breast-cancer-and-lymphoma-a-phase-3-randomized-open-label-blinded-endpoint-superiority-trial/

Kehl KL, Xu W, Lepisto E, et al. Natural Language Processing to Ascertain Cancer Outcomes From Medical Oncologist Notes. JCO Clinical Cancer Informatics. 2020-November-01 2020;(4):680–690. doi:10.1200/cci.20.00020 PubMed DOI PMC

Kwan JM, Oikonomou EK, Henry ML, Sinusas AJ. Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. Front Cardiovasc Med. 2022;9:829553. doi:10.3389/fcvm.2022.829553 PubMed DOI PMC

Sun LY, Echefu G, Doshi K, et al. Commentary: “Multimodality advanced cardiovascular and molecular imaging for early detection and monitoring of cancer therapy-associated cardiotoxicity and the role of artificial intelligence and big data”. General Commentary. Frontiers in Cardiovascular Medicine. 2023-February-27 2023;10doi:10.3389/fcvm.2023.982028 PubMed DOI PMC

Zhou Y, Hou Y, Hussain M, et al. Machine Learning–Based Risk Assessment for Cancer Therapy–Related Cardiac Dysfunction in 4300 Longitudinal Oncology Patients. Journal of the American Heart Association. 2020-December-01 2020;9(23)doi:10.1161/jaha.120.019628 PubMed DOI PMC

Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol. Jan 8 2013;61(1):77–84. doi:10.1016/j.jacc.2012.09.035 PubMed DOI

Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nature Medicine. 2021/May/01 2021;27(5):815–819. doi:10.1038/s41591-021-01335-4 PubMed DOI

Yao X, McCoy RG, Friedman PA, et al. ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial. Am Heart J. Jan 2020;219:31–36. doi:10.1016/j.ahj.2019.10.007 PubMed DOI

Attia ZI, Kapa S, Yao X, et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. May 2019;30(5):668–674. doi:10.1111/jce.13889 PubMed DOI

Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine. 2019-January-01 2019;25(1):70–74. doi:10.1038/s41591-018-0240-2 PubMed DOI

Zhou Y, Hou Y, Hussain M, et al. Machine Learning-Based Risk Assessment for Cancer Therapy-Related Cardiac Dysfunction in 4300 Longitudinal Oncology Patients. J Am Heart Assoc. Dec 2020;9(23):e019628. doi:10.1161/JAHA.120.019628 PubMed DOI PMC

Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. European Journal of Heart Failure. 2020;22(11):1945–1960. doi:10.1002/ejhf.1920 PubMed DOI PMC

Brown SA, Chung BY, Doshi K, et al. Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): a feasibility trial design. Cardiooncology. Jan 23 2023;9(1):7. doi:10.1186/s40959-022-00151-0 PubMed DOI PMC

Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. Aug 26 2022;doi:10.1093/eurheartj/ehac244 PubMed DOI

Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. December 18 2018;169(12):866–872. doi:10.7326/M18-1990 PubMed DOI PMC

Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. npj Digital Medicine. 2018-August-28 2018;1(1)doi:10.1038/s41746-018-0048-y PubMed DOI PMC

Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine. New England Journal of Medicine. 2019;380(14):1347–1358. doi:10.1056/NEJMra1814259 PubMed DOI

Cancela J, Charlafti I, Colloud S, Wu C. Chapter 2 - Digital health in the era of personalized healthcare: opportunities and challenges for bringing research and patient care to a new level. In: Syed-Abdul S, Zhu X, Fernandez-Luque L, eds. Digital Health. Elsevier; 2021:7–31.

World Health O. Global strategy on digital health 2020-2025. World Health Organization; 2021.

Nyangena J, Rajgopal R, Ombech EA, et al. Maturity assessment of Kenya’s health information system interoperability readiness. BMJ Health & Care Informatics. 2021-June-01 2021;28(1):e100241. doi:10.1136/bmjhci-2020-100241 PubMed DOI PMC

Hardacre A, Wheeler L. Regulatory Issues in Telehealth: It's More Than Just About Data Jurisdiction. In: Management Association IR, ed. Research Anthology on Telemedicine Efficacy, Adoption, and Impact on Healthcare Delivery. IGI Global; 2021:19–28.

Patel KB, Turner K, Alishahi Tabriz A, et al. Estimated Indirect Cost Savings of Using Telehealth Among Nonelderly Patients With Cancer. JAMA Netw Open. Jan 3 2023;6(1):e2250211. doi:10.1001/jamanetworkopen.2022.50211 PubMed DOI PMC

Batalik L, Filakova K, Radkovcova I, et al. Cardio-Oncology Rehabilitation and Telehealth: Rationale for Future Integration in Supportive Care of Cancer Survivors. Front Cardiovasc Med. 2022;9:858334. doi:10.3389/fcvm.2022.858334 PubMed DOI PMC

Vidula H, Cheyne C, Martens J, Gosev I, Zareba W, Goldenberg I. Telehealth for the Management of Left Ventricular Assist Device Patients: The University of Rochester TeleLVAD Study. J Card Fail. Jan 2021;27(1):112–113. doi:10.1016/j.cardfail.2020.10.001 PubMed DOI PMC

Kondapalli L, Arora G, Hawi R, et al. Innovations in Cardio-oncology Resulting from the COVID-19 Pandemic. Current Treatment Options in Oncology. 2022-September-01 2022;23(9):1288–1302. doi:10.1007/s11864-022-00997-7 PubMed DOI PMC

Brown S-A, Patel S, Rayan D, et al. A virtual-hybrid approach to launching a cardio-oncology clinic during a pandemic. Cardio-Oncology. 2021-December-01 2021;7(1)doi:10.1186/s40959-020-00088-2 PubMed DOI PMC

Fabritz L, Connolly D, Czarnecki E, et al. Remote Design of a Smartphone and Wearable Detected Atrial Arrhythmia in Older Adults Case Finding Study: Smart in OAC - AFNET 9. Front Cardiovasc Med. 2022;9:839202. doi:10.3389/fcvm.2022.839202 PubMed DOI PMC

Rodbard D. Continuous Glucose Monitoring: A Review of Recent Studies Demonstrating Improved Glycemic Outcomes. Diabetes Technol Ther. Jun 2017;19(S3):S25–s37. doi:10.1089/dia.2017.0035 PubMed DOI PMC

Zenun Franco R, Fallaize R, Weech M, Hwang F, Lovegrove JA. Effectiveness of Web-Based Personalized Nutrition Advice for Adults Using the eNutri Web App: Evidence From the EatWellUK Randomized Controlled Trial. J Med Internet Res. Apr 25 2022;24(4):e29088. doi:10.2196/29088 PubMed DOI PMC

Schubert TJ, Clegg K, Karalis D, et al. Impact of telehealth on the current and future practice of lipidology: a scoping review. J Clin Lipidol. Jan-Feb 2023;17(1):40–54. doi:10.1016/j.jacl.2022.12.003 PubMed DOI PMC

Brown SA, Rhee JW, Guha A, Rao VU. Innovation in Precision Cardio-Oncology During the Coronavirus Pandemic and Into a Post-pandemic World. Front Cardiovasc Med. 2020;7:145. doi:10.3389/fcvm.2020.00145 PubMed DOI PMC

Santaguida PL, Don-Wauchope AC, Oremus M, et al. BNP and NT-proBNP as prognostic markers in persons with acute decompensated heart failure: a systematic review. Heart Failure Reviews. 2014-August-01 2014;19(4):453–470. doi:10.1007/s10741-014-9442-y PubMed DOI

Madan N, Lucas J, Akhter N, et al. Artificial intelligence and imaging: Opportunities in cardio-oncology. Am Heart J Plus. Mar 2022;15doi:10.1016/j.ahjo.2022.100126 PubMed DOI PMC

Brown SA, Daly RP, Duma N, et al. Leveraging Social Media for Cardio-Oncology. Curr Treat Options Oncol. Aug 13 2020;21(10):83. doi:10.1007/s11864-020-00775-3 PubMed DOI

Goodman RE, Lamberg M, Wilcox K, et al. Social Media and Cardiovascular Health: Implications for Women. Curr Atheroscler Rep. Dec 2022;24(12):901–913. doi:10.1007/s11883-022-01069-9 PubMed DOI PMC

Petersen C, Lehmann CU. Social Media in Health Care: Time for Transparent Privacy Policies and Consent for Data Use and Disclosure. Appl Clin Inform. Georg Thieme Verlag KG Stuttgart; · New York.; 2018:856–859. vol. 4. PubMed PMC

Leung R. Using AI-ML to Augment the Capabilities of Social Media for Telehealth and Remote Patient Monitoring. Healthcare (Basel). Jun 10 2023;11(12)doi:10.3390/healthcare11121704 PubMed DOI PMC

Girardi A, Singh NP, Boyd CJ. Using Social Media in Health Care Research Should Proceed With Caution. Comment on "The Use of Social Media for Health Research Purposes: Scoping Review". J Med Internet Res. Jan 28 2022;24(1):e35286. doi:10.2196/35286 PubMed DOI PMC

Dai H, Younis A, Kong JD, et al. Big Data in Cardiology: State-of-Art and Future Prospects. Front Cardiovasc Med. 2022;9:844296. doi:10.3389/fcvm.2022.844296 PubMed DOI PMC

Filakova K, Janikova A, Felsoci M, et al. Home-based cardio-oncology rehabilitation using a telerehabilitation platform in hematological cancer survivors: a feasibility study. BMC Sports Science, Medicine and Rehabilitation. 2023-March-23 2023;15(1)doi:10.1186/s13102-023-00650-2 PubMed DOI PMC

Chang P, Zheng J. Updates in Cancer Rehabilitation Telehealth. Current Physical Medicine and Rehabilitation Reports. 2022-November-09 2022;10(4):332–338. doi:10.1007/s40141-022-00372-5 PubMed DOI PMC

Venturini E, Iannuzzo G, D’Andrea A, et al. Oncology and Cardiac Rehabilitation: An Underrated Relationship. Journal of Clinical Medicine. 2020-June-10 2020;9(6):1810. doi:10.3390/jcm9061810 PubMed DOI PMC

Kang DW, Wilson RL, Christopher CN, et al. Exercise Cardio-Oncology: Exercise as a Potential Therapeutic Modality in the Management of Anthracycline-Induced Cardiotoxicity. Front Cardiovasc Med. 2021;8:805735. doi:10.3389/fcvm.2021.805735 PubMed DOI PMC

Wilson RL, Christopher CN, Yang EH, et al. Incorporating Exercise Training into Cardio-Oncology Care. JACC: CardioOncology. 2023-October-01 2023;5(5):553–569. doi:10.1016/j.jaccao.2023.08.008 PubMed DOI PMC

Gilchrist SC, Barac A, Ades PA, et al. Cardio-Oncology Rehabilitation to Manage Cardiovascular Outcomes in Cancer Patients and Survivors: A Scientific Statement From the American Heart Association. Circulation. 2019-May-21 2019;139(21)doi:10.1161/cir.0000000000000679 PubMed DOI PMC

Bush NE, Ouellette G, Kinn J. Utility of the T2 Mood Tracker mobile application among army warrior transition unit service members. Mil Med. Dec 2014;179(12):1453–7. doi:10.7205/milmed-d-14-00271 PubMed DOI

Brown SA, Beavers C, Martinez HR, et al. Bridging the gap to advance the care of individuals with cancer: collaboration and partnership in the Cardiology Oncology Innovation Network (COIN). Cardiooncology. Feb 09 2022;8(1):2. doi:10.1186/s40959-022-00129-y PubMed DOI PMC

Batalik L, Filakova K, Sladeckova M, Dosbaba F, Su J, Pepera G. The cost-effectiveness of exercise-based cardiac telerehabilitation intervention: a systematic review. Eur J Phys Rehabil Med. Apr 2023;59(2):248–258. doi:10.23736/s1973-9087.23.07773-0 PubMed DOI PMC

Ohman RE, Yang EH, Abel ML. Inequity in Cardio-Oncology: Identifying Disparities in Cardiotoxicity and Links to Cardiac and Cancer Outcomes. J Am Heart Assoc. December 21 2021;10(24):e023852. doi:10.1161/JAHA.121.023852 PubMed DOI PMC

Berkman AM, Andersen CR, Tang K, Gilchrist SC, Roth ME. Disparities in physical activity in adolescent and young adult cancer survivors. Journal of Cancer Survivorship. 2023-June-01 2023;17(3):848–858. doi:10.1007/s11764-022-01264-2 PubMed DOI PMC

Wolfe MK, McDonald NC, Holmes GM. Transportation Barriers to Health Care in the United States: Findings From the National Health Interview Survey, 1997-2017. Am J Public Health. June 2020;110(6):815–822. doi:10.2105/AJPH.2020.305579 PubMed DOI PMC

Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. October 25 2019;366(6464):447–453. doi:10.1126/science.aax2342 PubMed DOI

Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. September 2019;69(5):363–385. doi:10.3322/caac.21565 PubMed DOI

Singh GK, Jemal A. Socioeconomic and Racial/Ethnic Disparities in Cancer Mortality, Incidence, and Survival in the United States, 1950-2014: Over Six Decades of Changing Patterns and Widening Inequalities. J Environ Public Health. 2017;2017:2819372. doi:10.1155/2017/2819372 PubMed DOI PMC

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. January 2019;69(1):7–34. doi:10.3322/caac.21551 PubMed DOI

Cousin L, Roper N, Nolan TS. Cardio-Oncology Health Disparities: Social Determinants of Health and Care for Black Breast Cancer Survivors. Clin J Oncol Nurs. October 01 2021;25(5):36–41. doi:10.1188/21.CJON.S1.36-41 PubMed DOI PMC

Duma N, Vera Aguilera J, Paludo J, et al. Representation of Minorities and Women in Oncology Clinical Trials: Review of the Past 14 Years. J Oncol Pract. January 2018;14(1):e1–e10. doi:10.1200/JOP.2017.025288 PubMed DOI

Al Hadidi S, Mims M, Miller-Chism CN, Kamble R. Participation of African American Persons in Clinical Trials Supporting U.S. Food and Drug Administration Approval of Cancer Drugs. Ann Intern Med. August 18 2020;173(4):320–322. doi:10.7326/M20-0410 PubMed DOI PMC

Loree JM, Anand S, Dasari A, et al. Disparity of Race Reporting and Representation in Clinical Trials Leading to Cancer Drug Approvals From 2008 to 2018. JAMA Oncol. Oct 01 2019;5(10):e191870. doi:10.1001/jamaoncol.2019.1870 PubMed DOI PMC

Frederix I, Caiani EG, Dendale P, et al. ESC e-Cardiology Working Group Position Paper: Overcoming challenges in digital health implementation in cardiovascular medicine. European Journal of Preventive Cardiology. 2019-July-01 2019;26(11):1166–1177. doi:10.1177/2047487319832394 PubMed DOI

Kontos E, Blake KD, Chou W-YS, Prestin A. Predictors of eHealth Usage: Insights on The Digital Divide From the Health Information National Trends Survey 2012. Journal of Medical Internet Research. 2014-July-16 2014;16(7):e172. doi:10.2196/jmir.3117 PubMed DOI PMC

Woods-Burnham L JJ, Hooker SE, Bedell FW, Dorff TB, Kittles RA. The role of diverse populations in US clinical trials. ScienceDirect. PubMed

Rivers BM, Bernhardt JM, Fleisher L, Green BL. Opportunities and challenges of using technology to address health disparities. Future Oncol. Mar 2014;10(4):519–22. doi:10.2217/fon.14.17 PubMed DOI

Manjunath C, Ifelayo O, Jones C, et al. Addressing Cardiovascular Health Disparities in Minnesota: Establishment of a Community Steering Committee by FAITH! (Fostering African-American Improvement in Total Health). Int J Environ Res Public Health. October 28 2019;16(21)doi:10.3390/ijerph16214144 PubMed DOI PMC

Brewer LC, Hayes SN, Jenkins SM, et al. Improving Cardiovascular Health Among African-Americans Through Mobile Health: the FAITH! App Pilot Study. J Gen Intern Med. August 2019;34(8):1376–1378. doi:10.1007/s11606-019-04936-5 PubMed DOI PMC

Ezaz G, Long JB, Gross CP, Chen J. Risk Prediction Model for Heart Failure and Cardiomyopathy After Adjuvant Trastuzumab Therapy for Breast Cancer. Journal of the American Heart Association. 2014-January-27 2014;3(1):e000472–e000472. doi:10.1161/jaha.113.000472 PubMed DOI PMC

Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of Heart Failure or Cardiomyopathy After Adjuvant Trastuzumab Therapy for Breast Cancer. Journal of the American College of Cardiology. 2012/December/18/ 2012;60(24):2504–2512. doi:10.1016/j.jacc.2012.07.068 PubMed DOI

Scheenstra B, Bruninx A, Van Daalen F, et al. Digital Health Solutions to Reduce the Burden of Atherosclerotic Cardiovascular Disease Proposed by the CARRIER Consortium. JMIR Cardio. 2022-October-17 2022;6(2):e37437. doi:10.2196/37437 PubMed DOI PMC

Statz GM, Evans AZ, Johnston SL, et al. Can Artificial Intelligence Enhance Syncope Management?: A JACC: Advances Multidisciplinary Collaborative Statement. JACC: Advances. 2023/May/01/ 2023;2(3):100323. doi:10.1016/j.jacadv.2023.100323 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...