Clinical severity and cardiac phenotype in phosphomannomutase 2-congenital disorders of glycosylation : Insights into genetics and management recommendations

. 2025 Jan ; 48 (1) : e12826. [epub] 20241205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39633515

Grantová podpora
AZV MZ CR NU22-07-00474 Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN 64165 Všeobecná Fakultní Nemocnice v Praze
lékařská fakulta Univerzity Karlovy COOPERATIO-Pediatrics
PI14/00021 Ministerio de Ciencia e Innovación
PI21/00068 Ministerio de Ciencia e Innovación
FI22/00218 Ministerio de Ciencia e Innovación
G049220N Fonds Wetenschappelijk Onderzoek
Fundamenteel Klinisch Mandaat 18B4322N Fonds Wetenschappelijk Onderzoek
PRG471 Eesti Teadusagentuur
PRG2040 Eesti Teadusagentuur
Prot. 202255RLB4 Agenzia Italiana del Farmaco, Ministero della Salute

Cardiac involvement (CI) in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG) is part of the multisystemic presentation contributing to high mortality rates. The most common cardiac manifestations are pericardial effusion, cardiomyopathy, and structural heart defects. A genotype-phenotype correlation with organ involvement has not yet been described. We analyzed clinical, biochemical, and molecular genetic data of 222 patients from eight European centers and characterized the natural course of patients with CI. Fifty-seven patients (45 children) presented with CI, of whom 24 died (median age 21 months, standard deviation 49.8). Pericardial effusion was the most frequent manifestation (55.4%), occurring mostly within the first 6 months of life. The most common pathogenic variants in patients with CI were p.(Arg141His) in 74%, followed by p.(Val231Met) in 36%, which is 3.5 times higher than in PMM2-CDG patients without CI (p < 0.0001). Twenty-one out of 36 patients with p.(Val231Met) had CI; among them, 15 died, compared to 33 out of 166 patients without p.(Val231Met) who had CI (p < 0.0001). Nine out of 33 patients died (p = 0.0015), indicating greater clinical severity. Furthermore, the p.(Val231Met) variant is predominant in Eastern Europe, suggesting a founder effect. Cardiac complications in PMM2-CDG patients are common and serious. The variant p.(Val231Met) profoundly influences the extent of CI and mortality rates. Therefore, we recommend cardiac surveillance be included in the follow-up protocols for PMM2-CDG.

Child Neuropsychiatry Department of Clinical and Experimental Medicine University of Catania Catania Italy

Children's Clinic Tartu University Hospital Tartu Estonia

Department of Clinical Genetics Genetics and Personalized Medicine Clinic Tartu University Hospital Tartu Estonia

Department of Development and Regeneration KU Leuven Leuven Belgium

Department of Human Genetics and Neurology Translational Metabolic Laboratory Donders Center for Brain Cognition and Behavior Radboud University Medical Center Nijmegen The Netherlands

Department of Inborn Errors of Metabolism and Paediatrics Institute of Mother and Child Warsaw Poland

Department of Internal Medicine Radboud University Medical Centre Nijmegen The Netherlands

Department of Paediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Paediatrics and Metabolic Center University Hospitals Leuven Leuven Belgium

Department of Pediatrics Milano Bicocca University San Gerardo Hospital Monza Italy

Division of Metabolism Bambino Gesù Children's Research Hospital Rome Italy

Institute of Clinical Medicine University of Tartu Tartu Estonia

Metabolic Unit Great Ormond Street Hospital and Institute of Child Health University College London NHS Trust London UK

Neurology Department Hospital Sant Joan de Déu U 703 Centre for Biomedical Research on Rare Diseases Instituto de Salud Carlos 3 Barcelona Spain

Oasi Research Institute IRCCS Troina Italy

One Day Clinic The Institute of Mother and Child Warsaw Poland

Tallinn Children's Hospital Tallinn Estonia

Zobrazit více v PubMed

Francisco R, Brasil S, Poejo J, et al. Congenital disorders of glycosylation (CDG): state of the art in 2022. Orphanet J Rare Dis. 2023;18:329.

Ng BG, Freeze HH, Himmelreich N, Blau N, Ferreira CR. Clinical and biochemical footprints of congenital disorders of glycosylation: proposed nosology. Mol Genet Metab. 2024;142:108476.

Matthijs G, Schollen E, Bjursell C, et al. Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG‐Ia). Hum Mutat. 2000;16:386‐394.

Monticelli M, Liguori L, Allocca M, Andreotti G, Cubellis MV. Beta‐glucose‐1,6‐bisphosphate stabilizes pathological phophomannomutase2 mutants in vitro and represents a lead compound to develop pharmacological chaperones for the most common disorder of glycosylation, PMM2‐CDG. Int J Mol Sci. 2019;20:4164.

Vaes L, Rymen D, Cassiman D, et al. Genotype‐phenotype correlations in PMM2‐CDG. Genes (Basel). 2021;12:12.

Altassan R, Peanne R, Jaeken J, et al. International clinical guidelines for the management of phosphomannomutase 2‐congenital disorders of glycosylation: diagnosis, treatment and follow up. J Inherit Metab Dis. 2019;42:5‐28.

Schiff M, Roda C, Monin ML, et al. Clinical, laboratory and molecular findings and long‐term follow‐up data in 96 French patients with PMM2‐CDG (phosphomannomutase 2‐congenital disorder of glycosylation) and review of the literature. J Med Genet. 2017;54:843‐851.

Marques‐da‐Silva D, Francisco R, Webster D, dos Reis Ferreira V, Jaeken J, Pulinilkunnil T. Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J Inherit Metab Dis. 2017;40:657‐672.

Achouitar S, Mohamed M, Gardeitchik T, et al. Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression. J Inherit Metab Dis. 2011;34:923‐927.

Briso‐Montiano A, Del Cano‐Ochoa F, Vilas A, et al. Insight on molecular pathogenesis and pharmacochaperoning potential in phosphomannomutase 2 deficiency, provided by novel human phosphomannomutase 2 structures. J Inherit Metab Dis. 2022;45:318‐333.

Zemet R, Hope KD, Edmondson AC, et al. Cardiomyopathy, an uncommon phenotype of congenital disorders of glycosylation: recommendations for baseline screening and follow‐up evaluation. Mol Genet Metab. 2024;142:108513.

Imtiaz F, Al‐Mostafa A, Al‐Hassnan ZN. Further delineation of the phenotype of congenital disorder of glycosylation DPAGT1‐CDG (CDG‐Ij) identified by homozygosity mapping. JIMD Rep. 2012;2:107‐111.

Kristiansson B, Stibler H, Conradi N, Eriksson BO, Ryd W. The heart and pericardial effusions in CDGS‐I (carbohydrate‐deficient glycoprotein syndrome type I). J Inherit Metab Dis. 1998;21:112‐124.

Bogdanska A, Lipinski P, Szymanska‐Rozek P, et al. Clinical, biochemical and molecular phenotype of congenital disorders of glycosylation: long‐term follow‐up. Orphanet J Rare Dis. 2021;16:17.

Gehrmann J, Sohlbach K, Linnebank M, et al. Cardiomyopathy in congenital disorders of glycosylation. Cardiol Young. 2003;13:345‐351.

Yildiz Y, Arslan M, Celik G, et al. Genotypes and estimated prevalence of phosphomannomutase 2 deficiency in Turkey differ significantly from those in Europe. Am J Med Genet A. 2020;182:705‐712.

Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr. 2004;38:282‐287.

Truin G, Guillard M, Lefeber DJ, et al. Pericardial and abdominal fluid accumulation in congenital disorder of glycosylation type Ia. Mol Genet Metab. 2008;94:481‐484.

Lipinski P, Cielecka‐Kuszyk J, Czarnowska E, Bogdańska A, Socha P, Tylki‐Szymańska A. Congenital disorders of glycosylation in children – histopathological and ultrastructural changes in the liver. Pediatr Neonatol. 2021;62:278‐283.

Feldman BJ, Rosenthal D. Carbohydrate‐deficient glycoprotein syndrome‐associated pericardial effusion treated with corticosteroids and salicylic acid. Pediatr Cardiol. 2002;23:469‐471.

Marquardt T, Hulskamp G, Gehrmann J, Debus V, Harms E, Kehl HG. Severe transient myocardial ischaemia caused by hypertrophic cardiomyopathy in a patient with congenital disorder of glycosylation type Ia. Eur J Pediatr. 2002;161:524‐527.

Kusa J, Pyrkosz A, Skiba A, Szkutnik M. Cardiac manifestations of carbohydrate‐deficient glycoprotein syndrome. Pediatr Cardiol. 2003;24:493‐494.

Aronica E, van Kempen AA, van der Heide M, et al. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol. 2005;109:433‐442.

Noelle V, Knuepfer M, Pulzer F, et al. Unusual presentation of congenital disorder of glycosylation type 1a: congenital persistent thrombocytopenia, hypertrophic cardiomyopathy and hydrops‐like aspect due to marked peripheral oedema. Eur J Pediatr. 2005;164:223‐226.

van de Kamp JM, Lefeber DJ, Ruijter GJ, et al. Congenital disorder of glycosylation type Ia presenting with hydrops fetalis. J Med Genet. 2007;44:277‐280.

Schollen E, Keldermans L, Foulquier F, et al. Characterization of two unusual truncating PMM2 mutations in two CDG‐Ia patients. Mol Genet Metab. 2007;90:408‐413.

Coman D, Bostock D, Hunter M, et al. Primary skeletal dysplasia as a major manifesting feature in an infant with congenital disorder of glycosylation type Ia. Am J Med Genet A. 2008;146A:389‐392.

Thong MK, Fietz M, Nicholls C, Lee MH, Asma O. Congenital disorder of glycosylation type Ia in a Malaysian family: clinical outcome and description of a novel PMM2 mutation. J Inherit Metab Dis. 2009;32(suppl 1):S41‐S44.

Verstegen RH, Theodore M, van de Klerk H, Morava E. Lymphatic edema in congenital disorders of glycosylation. JIMD Rep. 2012;4:113‐116.

Rudaks LI, Andersen C, Khong TY, Kelly A, Fietz M, Barnett CP. Hypertrophic cardiomyopathy with cardiac rupture and tamponade caused by congenital disorder of glycosylation type Ia. Pediatr Cardiol. 2012;33:827‐830.

Resende C, Carvalho C, Alegria A, et al. Congenital disorders of glycosylation with neonatal presentation. BMJ Case Rep. 2014;2014:bcr2013010037.

Malhotra A, Pateman A, Chalmers R, Coman D, Menahem S. Prenatal cardiac ultrasound finding in congenital disorder of glycosylation type 1a. Fetal Diagn Ther. 2009;25:54‐57.

Clayton PT, Winchester BG, Keir G. Hypertrophic obstructive cardiomyopathy in a neonate with the carbohydrate‐deficient glycoprotein syndrome. J Inherit Metab Dis. 1992;15:857‐861.

Isikay S, Baspinar O, Yilmaz K. A case of congenital disorder of glycosylation ia presented with recurrent pericardial effusion. Iran J Pediatr. 2014;24:652‐654.

Stromme P, Maehlen J, Strom EH, Torvik A. The carbohydrate deficient glycoprotein syndrome. Tidsskr nor Laegeforen. 1991;111:1236‐1237.

Chang Y, Twiss JL, Horoupian DS, Caldwell SA, Johnston KM. Inherited syndrome of infantile olivopontocerebellar atrophy, micronodular cirrhosis, and renal tubular microcysts: review of the literature and a report of an additional case. Acta Neuropathol. 1993;86:399‐404.

Funke S, Gardeitchik T, Kouwenberg D, et al. Perinatal and early infantile symptoms in congenital disorders of glycosylation. Am J Med Genet A. 2013;161A:578‐584.

Petersen MB, Brostrom K, Stibler H, Skovby F. Early manifestations of the carbohydrate‐deficient glycoprotein syndrome. J Pediatr. 1993;122:66‐70.

Stibler H, Blennow G, Kristiansson B, Lindehammer H, Hagberg B. Carbohydrate‐deficient glycoprotein syndrome: clinical expression in adults with a new metabolic disease. J Neurol Neurosurg Psychiatry. 1994;57:552‐556.

Shanti B, Silink M, Bhattacharya K, et al. Congenital disorder of glycosylation type Ia: heterogeneity in the clinical presentation from multivisceral failure to hyperinsulinaemic hypoglycaemia as leading symptoms in three infants with phosphomannomutase deficiency. J Inherit Metab Dis. 2009;32(suppl 1):S241‐S251.

Romano S, Bajolle F, Valayannopoulos V, et al. Conotruncal heart defects in three patients with congenital disorder of glycosylation type Ia (CDG Ia). J Med Genet. 2009;46:287‐288.

Vermeer S, Kremer HP, Leijten QH, et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG‐Ia) with normal routine CDG screening. J Neurol. 2007;254:1356‐1358.

Serrano M, de Diego V, Muchart J, et al. Phosphomannomutase deficiency (PMM2‐CDG): ataxia and cerebellar assessment. Orphanet J Rare Dis. 2015;10:138.

Wu R, Qiu K, Li D, Li Y, Deng B, Luo X. Analysis of PMM2 gene variant in an infant with congenital disorders of glycosylation type 1a. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2019;36:314‐317.

Qiang W, Sun R, Zheng X, Du Y. Massive pericardial effusion and cardiac tamponade revealed undiagnosed Turner syndrome: a case report. BMC Cardiovasc Disord. 2020;20:459.

Gorlacher M, Panagiotou E, Himmelreich N, et al. Fatal outcome after heart surgery in PMM2‐CDG due to a rare homozygous gene variant with double effects. Mol Genet Metab Rep. 2020;25:100673.

Di Rocco M, Hennet T, Grubenmann CE, et al. Congenital disorder of glycosylation (CDG) Ig: report on a patient and review of the literature. J Inherit Metab Dis. 2005;28:1162‐1164.

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405‐424.

Brucker WJ, Croteau SE, Prensner JR, et al. An emerging role for endothelial barrier support therapy for congenital disorders of glycosylation. J Inherit Metab Dis. 2020;43:880‐890.

Al Teneiji A, Bruun TU, Sidky S, et al. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab. 2017;120:235‐242.

Barone R, Carrozzi M, Parini R, et al. A nationwide survey of PMM2‐CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol. 2015;262:154‐164.

Matthijs G, Schollen E, Heykants L, Grunewald S. Phosphomannomutase deficiency: the molecular basis of the classical Jaeken syndrome (CDGS type Ia). Mol Genet Metab. 1999;68:220‐226.

Vaes L, Tiller GE, Perez B, et al. PMM2‐CDG caused by uniparental disomy: case report and literature review. JIMD Rep. 2020;54:16‐21.

The Human Genome Mutation Database. Accessed January 3, 2021. https://www.hgmd.cf.ac.uk/ac/index.php

Grunewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG‐Ia (phosphomannomutase deficiency). Am J Hum Genet. 2001;68:347‐354.

National Library of Medicine. Clinvar. Accessed January 3, 2021. https://www.ncbi.nlm.nih.gov/clinvar

Silvaggi NR, Zhang C, Lu Z, Dai J, Dunaway‐Mariano D, Allen KN. The X‐ray crystal structures of human alpha‐phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a. J Biol Chem. 2006;281:14918‐14926.

Citro V, Cimmaruta C, Monticelli M, et al. The analysis of variants in the general population reveals that PMM2 is extremely tolerant to missense mutations and that diagnosis of PMM2‐CDG can benefit from the identification of modifiers. Int J Mol Sci. 2018;19:2218.

Schollen E, Kjaergaard S, Legius E, Schwartz M, Matthijs G. Lack of Hardy‐Weinberg equilibrium for the most prevalent PMM2 mutation in CDG‐Ia (congenital disorders of glycosylation type Ia). Eur J Hum Genet. 2000;8:367‐371.

Mukaigasa K, Tsujita T, Nguyen VT, et al. Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A. 2018;115:2758‐2763.

Ligezka AN, Radenkovic S, Saraswat M, et al. Sorbitol is a severity biomarker for PMM2‐CDG with therapeutic implications. Ann Neurol. 2021;90:887‐900.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...