Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy

. 2022 Jun ; 11 (11) : 2393-2431. [epub] 20220321

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39635686

Surface plasmons, the collective oscillation of electrons, enable the manipulation of optical fields with unprecedented spatial and time resolutions. They are the workhorse of a large set of applications, such as chemical/biological sensors or Raman scattering spectroscopy, to name only a few. In particular, the ultrafast optical response configures one of the most fundamental characteristics of surface plasmons. Thus, the rich physics about photon-electron interactions could be retrieved and studied in detail. The associated plasmon-enhanced electric fields, generated by focusing the surface plasmons far beyond the diffraction limit, allow reaching the strong field regime with relatively low input laser intensities. This is in clear contrast to conventional optical methods, where their intrinsic limitations demand the use of large and costly laser amplifiers, to attain high electric fields, able to manipulate the electron dynamics in the non-linear regime. Moreover, the coherent plasmonic field excited by the optical field inherits an ultrahigh precision that could be properly exploited in, for instance, ultraprecision spectroscopy. In this review, we summarize the research achievements and developments in ultrafast plasmonics over the last decade. We particularly emphasize the strong-field physics aspects and the ultraprecision spectroscopy using optical frequency combs.

Zobrazit více v PubMed

Ritchie R. H. Plasma losses by fast electrons in thin films. Phys. Rev. . 1957;106(5):874. doi: 10.1103/physrev.106.874. DOI

Ritchie R., Eldridge H. Optical emission from irradiated foils. I. Phys. Rev. . 1962;126(6):1935. doi: 10.1103/physrev.126.1935. DOI

Sreekanth K. V., Alapan Y., EIKabbash M., et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. . 2016;15(6):621–627. doi: 10.1038/nmat4609. PubMed DOI PMC

Zijlstra P., Paulo P. M., Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. . 2012;7(6):379–382. doi: 10.1038/nnano.2012.51. PubMed DOI

Kabashin A. V., Evans P., Pastkovsky S., et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. . 2009;8(11):867–871. doi: 10.1038/nmat2546. PubMed DOI

Novotny L., Van Hulst N. Antennas for light. Nat. Photonics . 2011;5(2):83–90. doi: 10.1038/nphoton.2010.237. DOI

Kauranen M., Zayats A. V. Nonlinear plasmonics. Nat. Photonics . 2012;6(11):737–748. doi: 10.1038/nphoton.2012.244. DOI

Muehlschlegel P., Eisler H.-J., Martin O. J., Hecht B., Pohl D. Resonant optical antennas. Science . 2005;308(5728):1607–1609. PubMed

Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. . 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI

Hartschuh A., Sánchez E. J., Xie X. S., Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. . 2003;90(9):095503. doi: 10.1103/PhysRevLett.90.095503. PubMed DOI

Benz F., Schmidt M. K., Dreismann A., et al. Single-molecule optomechanics in “picocavities”. Science . 2016;354(6313):726–729. doi: 10.1126/science.aah5243. PubMed DOI

Kim S., Jin J., Kim Y.-J., Park I.-Y., Kim Y., Kim S.-W. High-harmonic generation by resonant plasmon field enhancement. Nature . 2008;453(7196):757–760. doi: 10.1038/nature07012. PubMed DOI

Hommelhoff P., Sortais Y., Aghajani-Talesh A., Kasevich M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. . 2006;96(7):077401. doi: 10.1103/PhysRevLett.96.077401. PubMed DOI

Anh N. D., Chun B. J., Choi S., Kim D.-E., Kim S., Kim Y.-J. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nat. Phys. . 2019;15(2):132–137. doi: 10.1038/s41567-018-0330-6. DOI

Homola J., Yee S. S., Gauglitz G. Surface plasmon resonance sensors. Sensor. Actuator. B Chem. . 1999;54(1–2):3–15. doi: 10.1016/s0925-4005(98)00321-9. DOI

Dombi P., Pápa Z., Vogelsang J., et al. Strong-field nano-optics. Rev. Mod. Phys. . 2020;92(2):025003. doi: 10.1103/revmodphys.92.025003. DOI

Yokogawa S., Burgos S. P., Atwater H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. . 2012;12(8):4349–4354. doi: 10.1021/nl302110z. PubMed DOI

Juan M. L., Righini M., Quidant R. Plasmon nano-optical tweezers. Nat. Photonics . 2011;5(6):349–356. doi: 10.1038/nphoton.2011.56. DOI

Aieta F., Genevet P., Kats M. A., et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. . 2012;12(9):4932–4936. doi: 10.1021/nl302516v. PubMed DOI

Yu N., Aieta F., Genevet P., Kats M. A., Gaburro Z., Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. . 2012;12(12):6328–6333. doi: 10.1021/nl303445u. PubMed DOI

Srituravanich W., Fang N., Sun C., Luo Q., Zhang X. Plasmonic nanolithography. Nano Lett. . 2004;4(6):1085–1088. doi: 10.1021/nl049573q. DOI

Ding F., Yang Y. Q., Deshpande R. A., Bozhevolnyi S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics . 2018;7(6):1129–1156. doi: 10.1515/nanoph-2017-0125. DOI

Choo H., Kim M.-K., Staffaroni M., et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics . 2012;6(12):837–843. doi: 10.1038/nphoton.2012.277. DOI

Kravets V. G., Kabashin A. V., Barnes W. L., Grigorenko A. N. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. . 2018;118(12):5912–5951. doi: 10.1021/acs.chemrev.8b00243. PubMed DOI PMC

Vakevainen A. I., Moerland R. J., Rekola H. T., et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. . 2014;14(4):1721–1727. doi: 10.1021/nl4035219. PubMed DOI

Rajeeva B. B., Lin L. H., Zheng Y. B. Design and applications of lattice plasmon resonances. Nano Res. . 2018;11(9):4423–4440. doi: 10.1007/s12274-017-1909-4. DOI

Luk’yanchuk B., Zheludev N. I., Maier S. A., et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. . 2010;9(9):707–715. doi: 10.1038/nmat2810. PubMed DOI

Rahmani M., Luk’yanchuk B., Hong M. H. Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev. . 2013;7(3):329–349. doi: 10.1002/lpor.201200021. DOI

Shafiei F., Monticone F., Le K. A., et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. . 2013;8(2):95–99. doi: 10.1038/nnano.2012.249. PubMed DOI

Zhang Y., Zhen Y. R., Neumann O., Day J. K., Nordlander P., Halas N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. . 2014;5(1):1–7. doi: 10.1038/ncomms5424. PubMed DOI

Min B., Ostby E., Sorger V., et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature . 2009;457(7228):455–458. doi: 10.1038/nature07627. PubMed DOI

Chen Y. P., Yin Y., Ma L. B., Schmidt O. G. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv. Opt. Mater. . 2021;9(12):2100143. doi: 10.1002/adom.202100143. DOI

Gramotnev D. K., Bozhevolnyi S. I. Plasmonics beyond the diffraction limit. Nat. Photonics . 2010;4(2):83–91. doi: 10.1038/nphoton.2009.282. DOI

Gramotnev D. K., Bozhevolnyi S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics . 2014;8(1):14–23. doi: 10.1038/nphoton.2013.232. DOI

Tame M. S., McEnery K. R., Ozdemir S. K., Lee J., Maier S. A., Kim M. S. Quantum plasmonics. Nat. Phys. . 2013;9(6):329–340. doi: 10.1038/nphys2615. DOI

Schuller J. A., Barnard E. S., Cai W. S., Jun Y. C., White J. S., Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. . 2010;9(3):193–204. doi: 10.1038/nmat2630. PubMed DOI

Kasani S., Curtin K., Wu N. Q. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics . 2019;8(12):2065–2089. doi: 10.1515/nanoph-2019-0158. DOI

Maier S. A., Kik P. G., Atwater H. A., et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. . 2003;2(4):229–232. doi: 10.1038/nmat852. PubMed DOI

Polman A. Plasmonics applied. Science . 2008;322(5903):868–869. doi: 10.1126/science.1163959. PubMed DOI

Maier S. A. Plasmonics: Fundamentals and Applications . New York, NY: Springer; 2007.

Hutter E., Fendler J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. . 2004;16(19):1685–1706. doi: 10.1002/adma.200400271. DOI

Murray W. A., Barnes W. L. Plasmonic materials. Adv. Mater. . 2007;19(22):3771–3782. doi: 10.1002/adma.200700678. DOI

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science . 2006;311(5758):189–193. doi: 10.1126/science.1114849. PubMed DOI

Torma P., Barnes W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. . 2015;78(1):20210694. doi: 10.1088/0034-4885/78/1/013901. PubMed DOI

Ding F., Bozhevolnyi S. I. A review of unidirectional surface plasmon polariton metacouplers. IEEE J. Sel. Top. Quantum . 2019;25(3):20210694. doi: 10.1109/jstqe.2019.2894067. DOI

Han Z. H., Bozhevolnyi S. I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. . 2013;76(1):0160402. doi: 10.1088/0034-4885/76/1/016402. PubMed DOI

Berini P., De Leon I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics . 2012;6(1):16–24. doi: 10.1038/nphoton.2011.285. DOI

Zhang J. X., Zhang L. D., Xu W. Surface plasmon polaritons: physics and applications. J. Phys. D . 2012;45(11):113001. doi: 10.1088/0022-3727/45/11/113001. DOI

Verhagen E., Polman A., Kuipers L. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express . 2008;16(1):45–57. doi: 10.1364/oe.16.000045. PubMed DOI

Bozhevolnyi S. I., Volkov V. S., Devaux E., Ebbesen T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. . 2005;95(4):046802. doi: 10.1103/PhysRevLett.95.046802. PubMed DOI

Volkov V. S., Bozhevolnyi S. I., Devaux E., Ebbesen T. W. Bend loss for channel plasmon polaritons. Appl. Phys. Lett. . 2006;89(14):046802. doi: 10.1364/oe.14.004494. DOI

Lin J., Balthasar Mueller J. P., Wang Q., et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science . 2013;340(6130):331–334. doi: 10.1126/science.1233746. PubMed DOI

Berweger S., Atkin J. M., Olmon R. L., Raschke M. B. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. . 2010;1(24):3427–3432. doi: 10.1021/jz101289z. DOI

Prade B., Vinet J. Y., Mysyrowicz A. Guided optical waves in planar heterostructures with negative dielectric-constant. Phys. Rev. B . 1991;44(24):13556–13572. doi: 10.1103/physrevb.44.13556. PubMed DOI

Avrutsky I., Salakhutdinov I., Elser J., Podolskiy V. Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B . 2007;75(24):241402. doi: 10.1103/physrevb.75.241402. DOI

Burgos S. P., Lee H. W., Feigenbaum E., Briggs R. M., Atwater H. A. Synthesis and characterization of plasmonic resonant guided wave networks. Nano Lett. . 2014;14(6):3284–3292. doi: 10.1021/nl500694c. PubMed DOI

Fang Y. R., Sun M. T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. . 2015;4(6):e294. doi: 10.1038/lsa.2015.67. DOI

Smith C. L. C., Stenger N., Kristensen A., Mortensen N. A., Bozhevolnyi S. I. Gap and channeled plasmons in tapered grooves: a review. Nanoscale . 2015;7(21):9355–9386. doi: 10.1039/c5nr01282a. PubMed DOI

Volkov V. S., Bozhevolnyi S. I., Rodrigo S. G., et al. Nanofocusing with channel plasmon polaritons. Nano Lett . 2009;9(3):1278–1282. doi: 10.1021/nl900268v. PubMed DOI

Bermudez-Urena E., Gonzalez-Ballestero C., Geiselmann M., et al. Coupling of individual quantum emitters to channel plasmons. Nat. Commun. . 2015;6(1):1–9. doi: 10.1038/ncomms8883. PubMed DOI PMC

Ebbensen T. W., Lezec H. J., Ghaemi H. F., Thio T., Wolff P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature . 1998;391(6668):667–669.

Martin-Moreno L., Garcia-Vidal F. J., Lezec H. J., et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. . 2001;86(6):1114–1117. doi: 10.1103/physrevlett.86.1114. PubMed DOI

Wu S., Wang Q., Yin X., et al. Enhanced optical transmission: role of the localized surface plasmon. Appl. Phys. Lett. . 2008;93(10):20210694. doi: 10.1063/1.2977488. DOI

De Leebeeck A., Kumar L. S., De Lange V., Brolo A. G. On-chip surface-based detection with nanohole arrays. Anal. Chem. . 2007;79(11):4094–4100. doi: 10.1021/ac070001a. PubMed DOI

Gordon R., Sinton D., Kavanagh K. L., Brolo A. G. A new generation of sensors based on extraordinary optical transmission. Accounts Chem. Res. . 2008;41(8):1049–1057. doi: 10.1021/ar800074d. PubMed DOI

Kim S., Jang M. S., Brar V. W., Atwater H. A. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat. Commun. . 2016;7:12323. doi: 10.1038/ncomms12323. PubMed DOI PMC

Nong J. P., Feng F., Min C. J., Yuan X. C., Somekh M. Effective transmission modulation at telecommunication wavelengths through continuous metal films using coupling between borophene plasmons and magnetic polaritons. Adv. Opt. Mater. . 2021;9(7):2001809. doi: 10.1002/adom.202001809. DOI

Genet C., Ebbesen T. W. Light in tiny holes. Nature . 2007;445(7123):39–46. doi: 10.1038/nature05350. PubMed DOI

Ciraci C., Hill R. T., Mock J. J., et al. Probing the ultimate limits of plasmonic enhancement. Science . 2012;337(6098):1072–1074. doi: 10.1126/science.1224823. PubMed DOI PMC

Stockman M. I., Kneipp K., Bozhevolnyi S. I., et al. Roadmap on plasmonics. J. Opt. . 2018;20(4):043001. doi: 10.1088/2040-8986/aaa114. DOI

Langer J., de Aberasturi D. J., Aizpurua J., et al. Present and future of surface-enhanced Raman scattering. ACS Nano . 2020;14(1):28–117. doi: 10.1021/acsnano.9b04224. PubMed DOI PMC

Petryayeva E., Krull U. J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta. . 2011;701(1):8–24. doi: 10.1016/j.aca.2011.08.020. PubMed DOI

Sepulveda B., Angelome P. C., Lechuga L. M., Liz-Marzan L. M. LSPR-based nanobiosensors. Nano Today . 2009;4(3):244–251. doi: 10.1016/j.nantod.2009.04.001. DOI

Cao E., Lin W. H., Sun M. T., Liang W. J., Song Y. Z. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics . 2018;7(1):145–167. doi: 10.1515/nanoph-2017-0059. DOI

Liz-Marzan L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir . 2006;22(1):32–41. doi: 10.1021/la0513353. PubMed DOI

Stockman M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express . 2011;19(22):22029–22106. doi: 10.1364/oe.19.022029. PubMed DOI

Lu X. M., Rycenga M., Skrabalak S. E., Wiley B., Xia Y. N. Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. . 2009;60:167–192. doi: 10.1146/annurev.physchem.040808.090434. PubMed DOI

Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of Femtosecond Laser Pulses . United States: American Institute of Physics; 1992.

Haus H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. . 2000;6(6):1173–1185. doi: 10.1109/2944.902165. DOI

Weiner A. Ultrafast Optics . Hoboken NJ: John Wiley & Sons; 2009.

Lamb W. E. Theory of an optical maser. Phys. Rev. . 1964;134(6A):A1429. doi: 10.1103/physrev.134.a1429. DOI

Sutter D. H., Steinmeyer G., Gallmann L., Tschudi T. Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti: sapphire laser producing pulses in the two-cycle regime. Opt. Lett. . 1999;24(9):631–633. doi: 10.1364/ol.24.000631. PubMed DOI

Baltuška A., Wei Z., Pshenichnikov M. S., Wiersma D. A. Optical pulse compression to 5 fs at a 1-MHz repetition rate. Opt. Lett. . 1997;22(2):102–104. doi: 10.1364/ol.22.000102. PubMed DOI

Nisoli M., De Silvestri S., Svelto O., Krausz F. Compression of high-energy laser pulses below 5 fs. Opt. Lett. . 1997;22(8):522–524. doi: 10.1364/ol.22.000522. PubMed DOI

Maine P., Strickland D., Bado P., Pessot M., Mourou G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. . 1988;24(2):398–403. doi: 10.1109/3.137. DOI

Strickland D. Nobel Lecture: generating high-intensity ultrashort optical pulses. Rev. Mod. Phys. . 2019;91(3):030502. doi: 10.1103/revmodphys.91.030502. DOI

Fischer M. C., Wilson J. W., Robles F. E., Warren W. S. Invited review article: pump-probe microscopy. Rev. Sci. Instrum. . 2016;87(3):031101. doi: 10.1063/1.4943211. PubMed DOI PMC

Brabec T., Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. . 2000;72(2):545. doi: 10.1103/revmodphys.72.545. DOI

Zewail A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A . 2000;104(24):5660–5694. doi: 10.1021/jp001460h. PubMed DOI

Corkum P. á., Krausz F. Attosecond science. Nat. Phys. . 2007;3(6):381–387. doi: 10.1038/nphys620. DOI

Corkum P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. . 1993;71(13):1994. doi: 10.1103/PhysRevLett.71.1994. PubMed DOI

Lewenstein M., Balcou P., Ivanov M. Y., L’huillier A., Corkum P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A . 1994;49(3):2117. doi: 10.1103/physreva.49.2117. PubMed DOI

Chang Z., Rundquist A., Wang H., Murnane M. M., Kapteyn H. C. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett. . 1997;79(16):2967. doi: 10.1103/physrevlett.79.2967. DOI

Strickland D., Mourou G. Compression of amplified chirped optical pulses. Opt. Commun. . 1985;55(6):447–449. doi: 10.1016/0030-4018(85)90151-8. DOI

Seres J., Seres E., Verhoef A. J., et al. Source of coherent kiloelectronvolt X-rays. Nature . 2005;433(7026):596. doi: 10.1038/433596a. PubMed DOI

Gohle C., Udem Th., Herrmann M., et al. A frequency comb in the extreme ultraviolet. Nature . 2005;436(7048):234–237. doi: 10.1038/nature03851. PubMed DOI

Jones R. J., Moll K. D., Thorpe M. J., Ye J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. . 2005;94(19):193201. doi: 10.1103/physrevlett.94.193201. PubMed DOI

Kärtner F. X. Few-cycle Laser Pulse Generation and its Applications . Berlin, Heidelberg: Springer Science & Business Media; 2004.

Mauritsson J., Remetter T., Swoboda M., et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. . 2010;105(5):053001. doi: 10.1103/PhysRevLett.105.053001. PubMed DOI

Haessler S., Caillat J., Boutu W., et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. . 2010;6(3):200–206. doi: 10.1038/nphys1511. DOI

Heyderman L., Solak H., David C., Atkinson D., Cowburn R., Nolting F. Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization. Appl. Phys. Lett. . 2004;85(21):4989–4991. doi: 10.1063/1.1821649. DOI

Hänsch T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. . 2006;78(4):1297. doi: 10.1103/revmodphys.78.1297. DOI

Ye J., Cundiff S. T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications . Boston, MA: Springer Science & Business Media; 2005.

Udem T., Holzwarth R., Hänsch T. W. Optical frequency metrology. Nature . 2002;416(6877):233–237. doi: 10.1038/416233a. PubMed DOI

Helbing F., Steinmeyer G., Stenger J., Telle H., Keller U. Carrier–envelope-offset dynamics and stabilization of femtosecond pulses. Appl. Phys. B . 2002;74(1):s35–s42. doi: 10.1007/s00340-002-0898-4. PubMed DOI

Telle H. R., Steinmeyer G., Dunlop A. E., Stenger J., Sutter D. H., Keller U. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B . 1999;69(4):327–332. doi: 10.1007/s003400050813. DOI

Minoshima K., Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. . 2000;39(30):5512–5517. doi: 10.1364/ao.39.005512. PubMed DOI

Coddington I., Swann W. C., Nenadovic L., Newbury N. R. Rapid and precise absolute distance measurements at long range. Nat. Photonics . 2009;3(6):351–356. doi: 10.1038/nphoton.2009.94. DOI

Murphy M. T., Udem Th., Holzwarth R., et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. Roy. Astron. Soc. . 2007;380(2):839–847. doi: 10.1111/j.1365-2966.2007.12147.x. DOI

Steinmetz T., Wilken T., Araujo-Hauck C., et al. Laser frequency combs for astronomical observations. Science . 2008;321(5894):1335–1337. doi: 10.1126/science.1161030. PubMed DOI

Rosenband T., Hume D. B., Schmidt P. O., et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science . 2008;319(5871):1808–1812. doi: 10.1126/science.1154622. PubMed DOI

Picqué N., Hänsch T. W. Frequency comb spectroscopy. Nat. Photonics . 2019;13(3):146–157. doi: 10.1038/s41566-018-0347-5. DOI

Udem T., Reichert J., Holzwarth R., Hänsch T. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. . 1999;24(13):881–883. doi: 10.1364/ol.24.000881. PubMed DOI

Udem T., Reichert J., Holzwarth R., Hänsch T. Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser. Phys. Rev. Lett. . 1999;82(18):3568. doi: 10.1103/physrevlett.82.3568. DOI

Thorpe M. J., Balslev-Clausen D., Kirchner M. S., Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express . 2008;16(4):2387–2397. doi: 10.1364/oe.16.002387. PubMed DOI

Peller D., Roelcke C., Kastner L. Z., et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photonics . 2021;15(2):143–147. doi: 10.1038/s41566-020-00720-8. DOI

Krausz F., Ivanov M. Attosecond physics. Rev. Mod. Phys. . 2009;81(1):163–234. doi: 10.1103/revmodphys.81.163. DOI

Uiberacker M., Uphues Th., Schultze M., et al. Attosecond real-time observation of electron tunnelling in atoms. Nature . 2007;446(7136):627–632. doi: 10.1038/nature05648. PubMed DOI

Midorikawa K. Ultrafast dynamic imaging. Nat. Photonics . 2011;5(11):640–641. doi: 10.1038/nphoton.2011.265. DOI

Paulus G. G., Nicklich W., Xu H. L., Lambropoulos P., Walther H. Plateau in above-threshold ionization spectra. Phys. Rev. Lett. . 1994;72(18):2851–2854. doi: 10.1103/physrevlett.72.2851. PubMed DOI

Schafer K. J., Yang B., Dimauro L. F., Kulander K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. . 1993;70(11):1599–1602. doi: 10.1103/physrevlett.70.1599. PubMed DOI

Li X. F., Lhuillier A., Ferray M., Lompre L. A., Mainfray G. Multiple-harmonic generation in rare-gases at high laser intensity. Phys. Rev. A . 1989;39(11):5751–5761. doi: 10.1103/physreva.39.5751. PubMed DOI

Mcpherson A., Gibson G., Jara H., et al. Studies of multiphoton production of vacuum ultraviolet-radiation in the rare-gases. J. Opt. Soc. Am. B . 1987;4(4):595–601. doi: 10.1364/josab.4.000595. DOI

Hentschel M., Kienberger R., Spielmann Ch., et al. Attosecond metrology. Nature . 2001;414(6863):509–513. doi: 10.1038/35107000. PubMed DOI

Krausz F., Stockman M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics . 2014;8(3):205–213. doi: 10.1038/nphoton.2014.28. DOI

Baltuska A., Udem Th., Uiberacker M., et al. Attosecond control of electronic processes by intense light fields. Nature . 2003;421(6923):611–615. doi: 10.1038/nature01414. PubMed DOI

Fedorov M. V., Keldysh’s L. V. Ionization in the field of a strong electromagnetic wave and modern physics of atomic interaction with a strong laser field. J. Exp. Theor. Phys. . 2016;122(3):449–455. doi: 10.1134/s1063776116030043. DOI

Reiss H. R. Complete Keldysh theory and its limiting cases. Phys. Rev. A . 1990;42(3):1476–1486. doi: 10.1103/physreva.42.1476. PubMed DOI

Garcia C. H. Coherent Attosecond Light Sources Based on High-Order Harmonic Generation: Influence of the Propagation effects, Ph.D. Thesis . Salamanca: Universidad de Salamanca; 2013.

Corkum P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. . 1993;71(13):1994–1997. doi: 10.1103/physrevlett.71.1994. PubMed DOI

Winterfeldt C., Spielmann C., Gerber G. Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. . 2008;80(1):117–140. doi: 10.1103/revmodphys.80.117. DOI

Paulus G. G., Becker W., Nicklich W., Walther H. Rescattering effects in above-threshold ionization - a classical-model. J. Phys. B Atom. Mol. Opt. Phys. . 1994;27(21):L703–L708. doi: 10.1088/0953-4075/27/21/003. PubMed DOI

Vampa G., Hammond T. J., Thire N., Corkum P. B. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. . 2015;115(19):193606. doi: 10.1103/PhysRevLett.115.193603. PubMed DOI

Schmid C. P., Weigl L., Grossing P., Huber R. Tunable non-integer high-harmonic generation in a topological insulator. Nature . 2021;593(7859):385–390. doi: 10.1038/s41586-021-03466-7. PubMed DOI

Sudmeyer T., Marchese S. V., Hashimoto S., et al. Femtosecond laser oscillators for high-field science. Nat. Photonics . 2008;2(10):599–604. doi: 10.1038/nphoton.2008.194. DOI

Passlack S., Mathias S., Andreyev O., Mittnacht D., Aeschlimann M., Bauer M. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. . 2006;100(2):024912. doi: 10.1063/1.2217985. DOI

Wang F., Liu W., He L., et al. Macroscopic effect of plasmon-driven high-order-harmonic generation. Phys. Rev. A . 2017;96(3):033407. doi: 10.1103/physreva.96.033407. DOI

Husakou A., Im S. J., Herrmann J. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A . 2011;83(4):043839. doi: 10.1103/physreva.83.043839. DOI

Shaaran T., Ciappina M. F., Lewenstein M. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement. Phys. Rev. A . 2012;86(2):023408. doi: 10.1103/physreva.86.023408. DOI

Stockman M. I., Faleev S. V., Bergman D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. . 2002;88(6):067402. doi: 10.1103/PhysRevLett.88.067402. PubMed DOI

Park I. Y., Kim S., Choi J., et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics . 2011;5(11):678–682. doi: 10.1038/nphoton.2011.258. DOI

Choi J., Kim S., Park I. Y., Lee D. H., Han S., Kim S. W. Generation of isolated attosecond pulses using a plasmonic funnel-waveguide. New J. Phys. . 2012;14(10):103038. doi: 10.1088/1367-2630/14/10/103038. DOI

Ciappina M. F., Acimovic S. S., Shaaran T., Biegert J., Quidant R., Lewenstein M. Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures. Opt. Express . 2012;20(24):26261–26274. doi: 10.1364/oe.20.026261. PubMed DOI

Sivis M., Duwe M., Abel B., Ropers C. Nanostructure-enhanced atomic line emission. Nature . 2012;485(7397):E1–E2. doi: 10.1038/nature10978. PubMed DOI

Kim S., Jin J., Kim Y. J., Park I. Y., Kim Y., Kim S. W. Nanostructure-enhanced atomic line emission reply. Nature . 2012;485(7397):E2–E3. doi: 10.1038/nature10979. PubMed DOI

Sivis M., Duwe M., Abel B., Ropers C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. . 2013;9(5):304–309. doi: 10.1038/nphys2590. DOI

Raschke M. B. High-harmonic generation with plasmonics: feasible or unphysical? Ann. Phys. . 2013;525(3):A40–A42. doi: 10.1002/andp.201300721. DOI

Ghimire S., DiChiara A. D., Sistrunk E., Agostini P., DiMauro L. F., Reis D. A. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. . 2011;7(2):138–141. doi: 10.1038/nphys1847. DOI

Kruchinin S. Y., Krausz F., Yakovlev V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. . 2018;90(2):021002. doi: 10.1103/revmodphys.90.021002. DOI

Ghimire S., Reis D. A. High-harmonic generation from solids. Nat. Phys. . 2019;15(1):10–16. doi: 10.1038/s41567-018-0315-5. DOI

You Y. S., Reis D. A., Ghimire S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. . 2017;13(4):345–349. doi: 10.1038/nphys3955. DOI

You Y. S., Yin Y., Wu Y., et al. High-harmonic generation in amorphous solids. Nat. Commun. . 2017;8(1):1–5. doi: 10.1038/s41467-017-00989-4. PubMed DOI PMC

Garg M., Kim H. Y., Goulielmakis E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photonics . 2018;12(5):291–296. doi: 10.1038/s41566-018-0123-6. DOI

Vampa G., Hammond T. J., Thire N., et al. Linking high harmonics from gases and solids. Nature . 2015;522(7557):462–464. doi: 10.1038/nature14517. PubMed DOI

Kim H., Han S., Kim Y. W., Kim S., Kim S. W. Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal. ACS Photonics . 2017;4(7):1627–1632. doi: 10.1021/acsphotonics.7b00350. DOI

Luu T., Garg M., Kruchinin S. Y., Moulet A., Hassan M. T., Goulielmakis E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature . 2015;521(7553):498–502. doi: 10.1038/nature14456. PubMed DOI

Ndabashimiye G., Ghimire S., Wu M., et al. Solid-state harmonics beyond the atomic limit. Nature . 2016;534(7608):520–523. doi: 10.1038/nature17660. PubMed DOI

Li L., Lan P., Zhu X., et al. Reciprocal-space-trajectory perspective on high-harmonic generation in solids. Phys. Rev. Lett. . 2019;122(19):193901. doi: 10.1103/physrevlett.122.193901. PubMed DOI

Tancogne-Dejean N., Mucke O. D., Kartner F. X., Rubio A. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nat. Commun. . 2017;8(1):1–10. doi: 10.1038/s41467-017-00764-5. PubMed DOI PMC

Ghimire S., DiChiara A. D., Sistrunk E., et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A . 2012;85(4):043836. doi: 10.1103/physreva.85.043836. DOI

Vampa G., McDonald C. R., Orlando G., Klug D. D., Corkum P. B., Brabec T. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. . 2014;113(7):073901. doi: 10.1103/PhysRevLett.113.073901. PubMed DOI

Higuchi T., Stockman M. I., Hommelhoff P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. . 2014;113(21):213901. doi: 10.1103/physrevlett.113.213901. PubMed DOI

Yoshikawa N., Tamaya T., Tanaka K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science . 2017;356(6339):736–738. doi: 10.1126/science.aam8861. PubMed DOI

Liu H. Z., Li Y. L., You Y. S., Ghimire S., Heinz T. F., Reis D. A. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. . 2017;13(3):262–265. doi: 10.1038/nphys3946. DOI

Han S., Kim H., Kim Y. W., et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms13105. PubMed DOI PMC

Vampa G., Ghamsari B. G., Siadat Mousavi S., et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. . 2017;13(7):659–662. doi: 10.1038/nphys4087. DOI

Kern C., Zurch M., Spielmann C. Limitations of extreme nonlinear ultrafast nanophotonics. Nanophotonics . 2015;4(3):303–323. doi: 10.1515/nanoph-2015-0013. DOI

Niikura H., Legare F., Hasbani R., et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature . 2002;417(6892):917–922. doi: 10.1038/nature00787. PubMed DOI

Ihee H., Lobastov V. A., Gomez U. M., et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science . 2001;291(5503):458–462. doi: 10.1126/science.291.5503.458. PubMed DOI

Ropers C., Solli D. R., Schulz C. P., Lienau C., Elsaesser T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. . 2007;98(4):043907. doi: 10.1103/PhysRevLett.98.043907. PubMed DOI

Kruger M., Schenk M., Forster M., Hommelhoff P. Attosecond physics in photoemission from a metal nanotip. J. Phys. B Atom. Mol. Opt. Phys. . 2012;45(7):074006. doi: 10.1088/0953-4075/45/7/074006. DOI

Schenk M., Kruger M., Hommelhoff P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. . 2010;105(25):257601. doi: 10.1103/physrevlett.105.257601. PubMed DOI

Krüger M. Attosecond Physics in Strong-Field Photoemission from Metal nanotips, Diss. Lmu . 2013.

Turchetti M., Bionta M. R., Yang Y., et al. Impact of DC bias on weak optical-field-driven electron emission in nano-vacuum-gap detectors. J. Opt. Soc. Am. B . 2021;38(3):1009–1016. doi: 10.1364/josab.413680. DOI

Schoetz J., Wang Z., Pisanty E., Lewenstein M., Kling M. F., Ciappina M. F. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photonics . 2019;6(12):3057–3069. doi: 10.1021/acsphotonics.9b01188. DOI

Yang Y. J., Turchetti M., Vasireddy P., et al. Light phase detection with on-chip petahertz electronic networks. Nat. Commun. . 2020;11(1):1–11. doi: 10.1038/s41467-020-17250-0. PubMed DOI PMC

Ludwig M., Aguirregabiria G., Ritzkowsky F., et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. . 2020;16(3):341–345. doi: 10.1038/s41567-019-0745-8. DOI

Rybka T., Ludwig M., Schmalz M. F., Knittel V., Brida D., Leitenstorfer A. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics . 2016;10(10):667–670. doi: 10.1038/nphoton.2016.174. DOI

Paasch-Colberg T., Schiffrin A., Karpowicz N., et al. Solid-state light-phase detector. Nat. Photonics . 2014;8(3):214–218. doi: 10.1038/nphoton.2013.348. DOI

Wimmer L., Herink G., Solli D. R., Yalunin S. V., Echternkamp K., Ropers C. Terahertz control of nanotip photoemission. Nat. Phys. . 2014;10(6):432–436. doi: 10.1038/nphys2974. DOI

Bormann R., Gulde M., Weismann A., Yalunin S. V., Ropers C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. . 2010;105(14):147601. doi: 10.1103/physrevlett.105.147601. PubMed DOI

Ahn B., Schotz J., Kang M., et al. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime. APL Photonics . 2017;2(3):036104. doi: 10.1063/1.4974529. DOI

Dombi P., Hörl A., Rácz P., et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. . 2013;13(2):674–678. doi: 10.1021/nl304365e. PubMed DOI PMC

Sivis M., Pazos-Perez N., Yu R. W., Alvarez-Puebla R., de Abajo F. J. G., Ropers C. Continuous-wave multiphoton photoemission from plasmonic nanostars. Commun. Phys. . 2018;1(1):1–6. doi: 10.1038/s42005-018-0014-7. DOI

Xiong X., Zhou Y., Lul Y., et al. Plasmon-enhanced resonant photoemission using atomically thick dielectric coatings. ACS Nano . 2020;14(7):8806–8815. doi: 10.1021/acsnano.0c03406. PubMed DOI

Irvine S. E., Dechant A., Elezzabi A. Y. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. . 2004;93(18):184801. doi: 10.1103/physrevlett.93.184801. PubMed DOI

Dombi P., Racz P. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Opt. Express . 2008;16(5):2887–2893. doi: 10.1364/oe.16.002887. PubMed DOI

Teichmann S. M., Racz P., Ciappina M. F., Dombi P. Strong-field plasmonic photoemission in the mid-IR at< 1 GW/cm 2 intensity. Sci. Rep. . 2015;5(1):1–5. doi: 10.1038/srep07584. PubMed DOI PMC

Dombi P., Irvine S. E., Racz P., Elezzabi A. Y. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express . 2010;18(23):24206–24212. doi: 10.1364/oe.18.024206. PubMed DOI

Vogelsang J., Robin J., Nagy B. J., Lienau C. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Lett . 2015;15(7):4685–4691. doi: 10.1021/acs.nanolett.5b01513. PubMed DOI

Racz P., Papa Z., Marton I., Dombi P. Measurement of nanoplasmonic field enhancement with ultrafast photoemission. Nano Lett. . 2017;17(2):1181–1186. doi: 10.1021/acs.nanolett.6b04893. PubMed DOI

Budai J., Papa Z., Marton I., Dombi P. Plasmon–plasmon coupling probed by ultrafast, strong-field photoemission with < 7 Å sensitivity. Nanoscale . 2018;10(34):16261–16267. doi: 10.1039/c8nr04242j. PubMed DOI

Krüger M., Schenk M., Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature . 2011;475(7354):78–81. doi: 10.1038/nature10196. PubMed DOI

Herink G., Solli D. R., Gulde M., Ropers C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature . 2012;483(7388):190–193. doi: 10.1038/nature10878. PubMed DOI

Piglosiewicz B., Schmidt S., Park D. J., et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics . 2014;8(1):38–43. doi: 10.1038/nphoton.2013.288. DOI

Putnam W. P., Hobbs R. G., Keathley P. D., Berggren K. K., Kartner F. X. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. . 2017;13(4):335–339. doi: 10.1038/nphys3978. PubMed DOI PMC

Bionta M. R., Ritzkowsky F., Turchetti M., et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics . 2021;15(6):456–460. doi: 10.1038/s41566-021-00792-0. DOI

Zimmermann P., Hotger A., Fernandez N., et al. Toward plasmonic tunnel gaps for nanoscale photoemission currents by on-chip laser ablation. Nano Lett. . 2019;19(2):1172–1178. doi: 10.1021/acs.nanolett.8b04612. PubMed DOI

Shankaran D. R., Gobi K. V., Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators, B, Chem. . 2007;121(1):158–177. doi: 10.1016/j.snb.2006.09.014. DOI

Habauzit D., Chopineau J., Roig B. SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal. Bioanal. Chem. . 2007;387(4):1215–1223. doi: 10.1007/s00216-006-0958-4. PubMed DOI

Baeumner A. J. Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. . 2003;377(3):434–445. doi: 10.1007/s00216-003-2158-9. PubMed DOI

Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. . 2008;108(2):462–493. doi: 10.1021/cr068107d. PubMed DOI

Hiep H. M., Endo T., Kerman K., et al. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci. Technol. Adv. Mater. . 2007;8(4):331–338. doi: 10.1016/j.stam.2006.12.010. DOI

McFarland A. D., Van Duyne R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. . 2003;3(8):1057–1062. doi: 10.1021/nl034372s. DOI

Metiu H. Surface enhanced spectroscopy. Prog. Surf. Sci. . 1984;17(3–4):153–320. doi: 10.1016/0079-6816(84)90017-0. DOI

Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys. . 1985;57(3):783. doi: 10.1103/revmodphys.57.783. DOI

Morton S. M., Jensen L. Understanding the molecule− surface chemical coupling in SERS. J. Am. Chem. Soc. . 2009;131(11):4090–4098. doi: 10.1021/ja809143c. PubMed DOI

Jensen L., Aikens C. M., Schatz G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. . 2008;37(5):1061–1073. doi: 10.1039/b706023h. PubMed DOI

Stiles P. L., Dieringer J. A., Shah N. C., Van Duyne R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. . 2008;1:601–626. doi: 10.1146/annurev.anchem.1.031207.112814. PubMed DOI

Schatz G. C., Young M. A., Van Duyne R. P. Surface-enhanced Raman Scattering . 2006. Electromagnetic mechanism of SERS; pp. 19–45.

Schatz G. C., Van Duyne R. P. Electromagnetic Mechanism of Surface-Enhanced Spectroscopy . Vol. 1. New York: Wiley; 2002. pp. 759–774.

Pérez-Jiménez A. I., Lyu D., Lu Z., Liu G., Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. . 2020;11(18):4563–4577. doi: 10.1039/d0sc00809e. PubMed DOI PMC

Nie S., Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science . 1997;275(5303):1102–1106. doi: 10.1126/science.275.5303.1102. PubMed DOI

Lim D.-K., Jeon K.-S., Kim H. M., Nam J.-M., Suh Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. . 2010;9(1):60–67. doi: 10.1038/nmat2596. PubMed DOI

Diddams S. A., Vahala K., Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science . 2020;369(6501):267. doi: 10.1126/science.aay3676. PubMed DOI

Kippenberg T. J., Holzwarth R., Diddams S. A. Microresonator-based optical frequency combs. Science . 2011;332(6029):555–559. doi: 10.1126/science.1193968. PubMed DOI

Del’Haye P., Schliesser A., Arcizet O., Wilken T., Holzwarth R., Kippenberg T. J. Optical frequency comb generation from a monolithic microresonator. Nature . 2007;450(7173):1214–1217. PubMed

Fujii S., Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics . 2020;9(5):1087–1104. doi: 10.1515/nanoph-2019-0497. DOI

Hansson T., Wabnitz S. Dynamics of microresonator frequency comb generation: models and stability. Nanophotonics . 2016;5(2):231–243. doi: 10.1515/nanoph-2016-0012. DOI

Zhang M., Buscaino B., Wang C., et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature . 2019;568(7752):373–377. doi: 10.1038/s41586-019-1008-7. PubMed DOI

Wang C., Zhang M., Yu M., Zhu R., Hu H., Loncar M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. . 2019;10(1):1–6. doi: 10.1038/s41467-019-08969-6. PubMed DOI PMC

Sakamoto T., Kawanishi T., Izutsu M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett. . 2007;32(11):1515–1517. doi: 10.1364/ol.32.001515. PubMed DOI

Kippenberg T., Spillane S., Vahala K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. . 2004;93(8):083904. doi: 10.1103/PhysRevLett.93.083904. PubMed DOI

Savchenkov A. A., Matsko A. B., Strekalov D., Mohageg M., Ilchenko V. S., Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. . 2004;93(24):243905. doi: 10.1103/physrevlett.93.243905. PubMed DOI

Haffner C., Chelladurai D., Fedoryshyn Y., et al. Low-loss plasmon-assisted electro-optic modulator. Nature . 2018;556(7702):483–486. doi: 10.1038/s41586-018-0031-4. PubMed DOI PMC

Liu M., Yin X., Ulin-Avila E., et al. A graphene-based broadband optical modulator. Nature . 2011;474(7349):64–67. doi: 10.1038/nature10067. PubMed DOI

Luo S., Wang Y., Tong X., Wang Z. Graphene-based optical modulators. Nanoscale Res. Lett. . 2015;10(1):1–11. doi: 10.1186/s11671-015-0866-7. PubMed DOI PMC

Yasui T., Kabetani Y., Saneyoshi E., Yokoyama S., Araki T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. . 2006;88(24):241104. doi: 10.1063/1.2209718. DOI

Consolino L., Taschin A., Bartolini P., et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. . 2012;3(1):1–5. doi: 10.1038/ncomms2048. PubMed DOI

Porat G., Heyl C. M., Schoun S. B., et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photonics . 2018;12(7):387–391. doi: 10.1038/s41566-018-0199-z. DOI

Cingöz A., Yost D. C., Allison T. K., et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature . 2012;482(7383):68–71. doi: 10.1038/nature10711. PubMed DOI

Changala P. B., Weichman M. L., Lee K. F., Fermann M. E., Ye J. Rovibrational quantum state resolution of the C60 fullerene. Science . 2019;363(6422):49–54. doi: 10.1126/science.aav2616. PubMed DOI

Thorpe M. J., Moll K. D., Jones R. J., Safdi B., Ye J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science . 2006;311(5767):1595–1599. doi: 10.1126/science.1123921. PubMed DOI

Ideguchi T., Holzner S., Bernhardt B., Guelachvili G., Picqué N., Hänsch T. W. Coherent Raman spectro-imaging with laser frequency combs. Nature . 2013;502(7471):355–358. doi: 10.1038/nature12607. PubMed DOI

Lomsadze B., Smith B. C., Cundiff S. T. Tri-comb spectroscopy. Nat. Photonics . 2018;12(11):676–680. doi: 10.1038/s41566-018-0267-4. DOI

Long D. A., Fleisher A. J., Plusquellic D. F., Hodges J. T. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys. Rev. A . 2016;94(6):061801. doi: 10.1103/PhysRevA.94.061801. PubMed DOI PMC

Nishiyama A., Nakajima Y., Nakagawa K. i., Minoshima K. Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection. Opt. Express . 2018;26(7):8957–8967. doi: 10.1364/oe.26.008957. PubMed DOI

Eckstein J., Ferguson A., Hänsch T. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. . 1978;40(13):847. doi: 10.1103/physrevlett.40.847. DOI

Mandon J., Guelachvili G., Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics . 2009;3(2):99–102. doi: 10.1038/nphoton.2008.293. DOI

Keilmann F., Gohle C., Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. . 2004;29(13):1542–1544. doi: 10.1364/ol.29.001542. PubMed DOI

Schmidt P. O., Hemmerling B., Brandstätter B., Nigg D. Fachorgan für Wirtschaft und Wissenschaft Amts-und Mitteilungsblatt der Physikalisch-Technischen Bundesanstalt Braunschweig und . Vol. 54. Berlin: PTB-Mitteilungen; 2009. Quantum logic for precision spectroscopy; pp. 54–59.

Diddams S. A., Hollberg L., Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature . 2007;445(7128):627–630. doi: 10.1038/nature05524. PubMed DOI

Morgenweg J., Barmes I., Eikema K. S. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nat. Phys. . 2014;10(1):30–33. doi: 10.1038/nphys2807. DOI

Griffiths P. R., De Haseth J. A. Fourier Transform Infrared Spectrometry . Hoboken, NJ: John Wiley & Sons; 2007.

Spaun B., Changala P. B., Patterson D., et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature . 2016;533(7604):517–520. doi: 10.1038/nature17440. PubMed DOI

Coddington I., Newbury N., Swann W. Dual-comb spectroscopy. Optica . 2016;3(4):414–426. doi: 10.1364/optica.3.000414. PubMed DOI PMC

Friedlein J. T., Baumann E., Briggman K. A., Cossel K. C. Dual-comb photoacoustic spectroscopy. Nat. Commun. . 2020;11(1):1–10. doi: 10.1038/s41467-020-16917-y. PubMed DOI PMC

Wildi T., Voumard T., Brasch V., Herr T. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun. . 2020;11(1):1–6. doi: 10.1364/es.2020.em2c.1. PubMed DOI PMC

Thorpe M. J., Ye J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B . 2008;91(3):397–414. doi: 10.1007/s00340-008-3019-1. PubMed DOI

Adler F., Thorpe M. J., Cossel K. C., Ye J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. . 2010;3:175–205. doi: 10.1146/annurev-anchem-060908-155248. PubMed DOI

Bernhardt B., Ozawa A., Jacquet P., et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics . 2010;4(1):55–57. doi: 10.1038/nphoton.2009.217. DOI

Savage K. J., Hawkeye M. M., Esteban R., Borisov A. G., Aizpurua J., Baumberg J. J. Revealing the quantum regime in tunnelling plasmonics. Nature . 2012;491(7425):574–577. doi: 10.1038/nature11653. PubMed DOI

Giorgetta F. R., Rieker G. B., Baumann E., et al. Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. . 2015;115(10):103901. doi: 10.1103/physrevlett.115.103901. PubMed DOI

Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. . 2008;7(6):442–453. doi: 10.1038/nmat2162. PubMed DOI

Otto L. M., Mohr D. A., Johnson T. W., Oh S.-H., Lindquist N. C. Polarization interferometry for real-time spectroscopic plasmonic sensing. Nanoscale . 2015;7(9):4226–4233. doi: 10.1039/c4nr06586g. PubMed DOI PMC

Gao Y., Gan Q., Xin Z., Cheng X., Bartoli F. J. Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano . 2011;5(12):9836–9844. doi: 10.1021/nn2034204. PubMed DOI

Morrill D., Li D., Pacifici D. Measuring subwavelength spatial coherence with plasmonic interferometry. Nat. Photonics . 2016;10(10):681–687. doi: 10.1038/nphoton.2016.162. DOI

Geng X. T., Chun B. J., Seo J. H., et al. Frequency comb transferred by surface plasmon resonance. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms10685. PubMed DOI PMC

Liu N., Hentschel M., Weiss T., Alivisatos A. P., Giessen H. Three-dimensional plasmon rulers. Science . 2011;332(6036):1407–1410. doi: 10.1126/science.1199958. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...