Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39635686
PubMed Central
PMC11502069
DOI
10.1515/nanoph-2021-0694
PII: nanoph-2021-0694
Knihovny.cz E-zdroje
- Klíčová slova
- optical frequency comb, photoelectron spectroscopy, strong-field physics, surface plasmons, ultrafast plasmonics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Surface plasmons, the collective oscillation of electrons, enable the manipulation of optical fields with unprecedented spatial and time resolutions. They are the workhorse of a large set of applications, such as chemical/biological sensors or Raman scattering spectroscopy, to name only a few. In particular, the ultrafast optical response configures one of the most fundamental characteristics of surface plasmons. Thus, the rich physics about photon-electron interactions could be retrieved and studied in detail. The associated plasmon-enhanced electric fields, generated by focusing the surface plasmons far beyond the diffraction limit, allow reaching the strong field regime with relatively low input laser intensities. This is in clear contrast to conventional optical methods, where their intrinsic limitations demand the use of large and costly laser amplifiers, to attain high electric fields, able to manipulate the electron dynamics in the non-linear regime. Moreover, the coherent plasmonic field excited by the optical field inherits an ultrahigh precision that could be properly exploited in, for instance, ultraprecision spectroscopy. In this review, we summarize the research achievements and developments in ultrafast plasmonics over the last decade. We particularly emphasize the strong-field physics aspects and the ultraprecision spectroscopy using optical frequency combs.
Zobrazit více v PubMed
Ritchie R. H. Plasma losses by fast electrons in thin films. Phys. Rev. . 1957;106(5):874. doi: 10.1103/physrev.106.874. DOI
Ritchie R., Eldridge H. Optical emission from irradiated foils. I. Phys. Rev. . 1962;126(6):1935. doi: 10.1103/physrev.126.1935. DOI
Sreekanth K. V., Alapan Y., EIKabbash M., et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. . 2016;15(6):621–627. doi: 10.1038/nmat4609. PubMed DOI PMC
Zijlstra P., Paulo P. M., Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. . 2012;7(6):379–382. doi: 10.1038/nnano.2012.51. PubMed DOI
Kabashin A. V., Evans P., Pastkovsky S., et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. . 2009;8(11):867–871. doi: 10.1038/nmat2546. PubMed DOI
Novotny L., Van Hulst N. Antennas for light. Nat. Photonics . 2011;5(2):83–90. doi: 10.1038/nphoton.2010.237. DOI
Kauranen M., Zayats A. V. Nonlinear plasmonics. Nat. Photonics . 2012;6(11):737–748. doi: 10.1038/nphoton.2012.244. DOI
Muehlschlegel P., Eisler H.-J., Martin O. J., Hecht B., Pohl D. Resonant optical antennas. Science . 2005;308(5728):1607–1609. PubMed
Willets K. A., Van Duyne R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. . 2007;58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607. PubMed DOI
Hartschuh A., Sánchez E. J., Xie X. S., Novotny L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. . 2003;90(9):095503. doi: 10.1103/PhysRevLett.90.095503. PubMed DOI
Benz F., Schmidt M. K., Dreismann A., et al. Single-molecule optomechanics in “picocavities”. Science . 2016;354(6313):726–729. doi: 10.1126/science.aah5243. PubMed DOI
Kim S., Jin J., Kim Y.-J., Park I.-Y., Kim Y., Kim S.-W. High-harmonic generation by resonant plasmon field enhancement. Nature . 2008;453(7196):757–760. doi: 10.1038/nature07012. PubMed DOI
Hommelhoff P., Sortais Y., Aghajani-Talesh A., Kasevich M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. . 2006;96(7):077401. doi: 10.1103/PhysRevLett.96.077401. PubMed DOI
Anh N. D., Chun B. J., Choi S., Kim D.-E., Kim S., Kim Y.-J. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nat. Phys. . 2019;15(2):132–137. doi: 10.1038/s41567-018-0330-6. DOI
Homola J., Yee S. S., Gauglitz G. Surface plasmon resonance sensors. Sensor. Actuator. B Chem. . 1999;54(1–2):3–15. doi: 10.1016/s0925-4005(98)00321-9. DOI
Dombi P., Pápa Z., Vogelsang J., et al. Strong-field nano-optics. Rev. Mod. Phys. . 2020;92(2):025003. doi: 10.1103/revmodphys.92.025003. DOI
Yokogawa S., Burgos S. P., Atwater H. A. Plasmonic color filters for CMOS image sensor applications. Nano Lett. . 2012;12(8):4349–4354. doi: 10.1021/nl302110z. PubMed DOI
Juan M. L., Righini M., Quidant R. Plasmon nano-optical tweezers. Nat. Photonics . 2011;5(6):349–356. doi: 10.1038/nphoton.2011.56. DOI
Aieta F., Genevet P., Kats M. A., et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. . 2012;12(9):4932–4936. doi: 10.1021/nl302516v. PubMed DOI
Yu N., Aieta F., Genevet P., Kats M. A., Gaburro Z., Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. . 2012;12(12):6328–6333. doi: 10.1021/nl303445u. PubMed DOI
Srituravanich W., Fang N., Sun C., Luo Q., Zhang X. Plasmonic nanolithography. Nano Lett. . 2004;4(6):1085–1088. doi: 10.1021/nl049573q. DOI
Ding F., Yang Y. Q., Deshpande R. A., Bozhevolnyi S. I. A review of gap-surface plasmon metasurfaces: fundamentals and applications. Nanophotonics . 2018;7(6):1129–1156. doi: 10.1515/nanoph-2017-0125. DOI
Choo H., Kim M.-K., Staffaroni M., et al. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics . 2012;6(12):837–843. doi: 10.1038/nphoton.2012.277. DOI
Kravets V. G., Kabashin A. V., Barnes W. L., Grigorenko A. N. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. . 2018;118(12):5912–5951. doi: 10.1021/acs.chemrev.8b00243. PubMed DOI PMC
Vakevainen A. I., Moerland R. J., Rekola H. T., et al. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. . 2014;14(4):1721–1727. doi: 10.1021/nl4035219. PubMed DOI
Rajeeva B. B., Lin L. H., Zheng Y. B. Design and applications of lattice plasmon resonances. Nano Res. . 2018;11(9):4423–4440. doi: 10.1007/s12274-017-1909-4. DOI
Luk’yanchuk B., Zheludev N. I., Maier S. A., et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. . 2010;9(9):707–715. doi: 10.1038/nmat2810. PubMed DOI
Rahmani M., Luk’yanchuk B., Hong M. H. Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev. . 2013;7(3):329–349. doi: 10.1002/lpor.201200021. DOI
Shafiei F., Monticone F., Le K. A., et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. . 2013;8(2):95–99. doi: 10.1038/nnano.2012.249. PubMed DOI
Zhang Y., Zhen Y. R., Neumann O., Day J. K., Nordlander P., Halas N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. . 2014;5(1):1–7. doi: 10.1038/ncomms5424. PubMed DOI
Min B., Ostby E., Sorger V., et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature . 2009;457(7228):455–458. doi: 10.1038/nature07627. PubMed DOI
Chen Y. P., Yin Y., Ma L. B., Schmidt O. G. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv. Opt. Mater. . 2021;9(12):2100143. doi: 10.1002/adom.202100143. DOI
Gramotnev D. K., Bozhevolnyi S. I. Plasmonics beyond the diffraction limit. Nat. Photonics . 2010;4(2):83–91. doi: 10.1038/nphoton.2009.282. DOI
Gramotnev D. K., Bozhevolnyi S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics . 2014;8(1):14–23. doi: 10.1038/nphoton.2013.232. DOI
Tame M. S., McEnery K. R., Ozdemir S. K., Lee J., Maier S. A., Kim M. S. Quantum plasmonics. Nat. Phys. . 2013;9(6):329–340. doi: 10.1038/nphys2615. DOI
Schuller J. A., Barnard E. S., Cai W. S., Jun Y. C., White J. S., Brongersma M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. . 2010;9(3):193–204. doi: 10.1038/nmat2630. PubMed DOI
Kasani S., Curtin K., Wu N. Q. A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications. Nanophotonics . 2019;8(12):2065–2089. doi: 10.1515/nanoph-2019-0158. DOI
Maier S. A., Kik P. G., Atwater H. A., et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. . 2003;2(4):229–232. doi: 10.1038/nmat852. PubMed DOI
Polman A. Plasmonics applied. Science . 2008;322(5903):868–869. doi: 10.1126/science.1163959. PubMed DOI
Maier S. A. Plasmonics: Fundamentals and Applications . New York, NY: Springer; 2007.
Hutter E., Fendler J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. . 2004;16(19):1685–1706. doi: 10.1002/adma.200400271. DOI
Murray W. A., Barnes W. L. Plasmonic materials. Adv. Mater. . 2007;19(22):3771–3782. doi: 10.1002/adma.200700678. DOI
Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science . 2006;311(5758):189–193. doi: 10.1126/science.1114849. PubMed DOI
Torma P., Barnes W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. . 2015;78(1):20210694. doi: 10.1088/0034-4885/78/1/013901. PubMed DOI
Ding F., Bozhevolnyi S. I. A review of unidirectional surface plasmon polariton metacouplers. IEEE J. Sel. Top. Quantum . 2019;25(3):20210694. doi: 10.1109/jstqe.2019.2894067. DOI
Han Z. H., Bozhevolnyi S. I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. . 2013;76(1):0160402. doi: 10.1088/0034-4885/76/1/016402. PubMed DOI
Berini P., De Leon I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics . 2012;6(1):16–24. doi: 10.1038/nphoton.2011.285. DOI
Zhang J. X., Zhang L. D., Xu W. Surface plasmon polaritons: physics and applications. J. Phys. D . 2012;45(11):113001. doi: 10.1088/0022-3727/45/11/113001. DOI
Verhagen E., Polman A., Kuipers L. Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express . 2008;16(1):45–57. doi: 10.1364/oe.16.000045. PubMed DOI
Bozhevolnyi S. I., Volkov V. S., Devaux E., Ebbesen T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. . 2005;95(4):046802. doi: 10.1103/PhysRevLett.95.046802. PubMed DOI
Volkov V. S., Bozhevolnyi S. I., Devaux E., Ebbesen T. W. Bend loss for channel plasmon polaritons. Appl. Phys. Lett. . 2006;89(14):046802. doi: 10.1364/oe.14.004494. DOI
Lin J., Balthasar Mueller J. P., Wang Q., et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science . 2013;340(6130):331–334. doi: 10.1126/science.1233746. PubMed DOI
Berweger S., Atkin J. M., Olmon R. L., Raschke M. B. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. . 2010;1(24):3427–3432. doi: 10.1021/jz101289z. DOI
Prade B., Vinet J. Y., Mysyrowicz A. Guided optical waves in planar heterostructures with negative dielectric-constant. Phys. Rev. B . 1991;44(24):13556–13572. doi: 10.1103/physrevb.44.13556. PubMed DOI
Avrutsky I., Salakhutdinov I., Elser J., Podolskiy V. Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B . 2007;75(24):241402. doi: 10.1103/physrevb.75.241402. DOI
Burgos S. P., Lee H. W., Feigenbaum E., Briggs R. M., Atwater H. A. Synthesis and characterization of plasmonic resonant guided wave networks. Nano Lett. . 2014;14(6):3284–3292. doi: 10.1021/nl500694c. PubMed DOI
Fang Y. R., Sun M. T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. . 2015;4(6):e294. doi: 10.1038/lsa.2015.67. DOI
Smith C. L. C., Stenger N., Kristensen A., Mortensen N. A., Bozhevolnyi S. I. Gap and channeled plasmons in tapered grooves: a review. Nanoscale . 2015;7(21):9355–9386. doi: 10.1039/c5nr01282a. PubMed DOI
Volkov V. S., Bozhevolnyi S. I., Rodrigo S. G., et al. Nanofocusing with channel plasmon polaritons. Nano Lett . 2009;9(3):1278–1282. doi: 10.1021/nl900268v. PubMed DOI
Bermudez-Urena E., Gonzalez-Ballestero C., Geiselmann M., et al. Coupling of individual quantum emitters to channel plasmons. Nat. Commun. . 2015;6(1):1–9. doi: 10.1038/ncomms8883. PubMed DOI PMC
Ebbensen T. W., Lezec H. J., Ghaemi H. F., Thio T., Wolff P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature . 1998;391(6668):667–669.
Martin-Moreno L., Garcia-Vidal F. J., Lezec H. J., et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. . 2001;86(6):1114–1117. doi: 10.1103/physrevlett.86.1114. PubMed DOI
Wu S., Wang Q., Yin X., et al. Enhanced optical transmission: role of the localized surface plasmon. Appl. Phys. Lett. . 2008;93(10):20210694. doi: 10.1063/1.2977488. DOI
De Leebeeck A., Kumar L. S., De Lange V., Brolo A. G. On-chip surface-based detection with nanohole arrays. Anal. Chem. . 2007;79(11):4094–4100. doi: 10.1021/ac070001a. PubMed DOI
Gordon R., Sinton D., Kavanagh K. L., Brolo A. G. A new generation of sensors based on extraordinary optical transmission. Accounts Chem. Res. . 2008;41(8):1049–1057. doi: 10.1021/ar800074d. PubMed DOI
Kim S., Jang M. S., Brar V. W., Atwater H. A. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays. Nat. Commun. . 2016;7:12323. doi: 10.1038/ncomms12323. PubMed DOI PMC
Nong J. P., Feng F., Min C. J., Yuan X. C., Somekh M. Effective transmission modulation at telecommunication wavelengths through continuous metal films using coupling between borophene plasmons and magnetic polaritons. Adv. Opt. Mater. . 2021;9(7):2001809. doi: 10.1002/adom.202001809. DOI
Genet C., Ebbesen T. W. Light in tiny holes. Nature . 2007;445(7123):39–46. doi: 10.1038/nature05350. PubMed DOI
Ciraci C., Hill R. T., Mock J. J., et al. Probing the ultimate limits of plasmonic enhancement. Science . 2012;337(6098):1072–1074. doi: 10.1126/science.1224823. PubMed DOI PMC
Stockman M. I., Kneipp K., Bozhevolnyi S. I., et al. Roadmap on plasmonics. J. Opt. . 2018;20(4):043001. doi: 10.1088/2040-8986/aaa114. DOI
Langer J., de Aberasturi D. J., Aizpurua J., et al. Present and future of surface-enhanced Raman scattering. ACS Nano . 2020;14(1):28–117. doi: 10.1021/acsnano.9b04224. PubMed DOI PMC
Petryayeva E., Krull U. J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta. . 2011;701(1):8–24. doi: 10.1016/j.aca.2011.08.020. PubMed DOI
Sepulveda B., Angelome P. C., Lechuga L. M., Liz-Marzan L. M. LSPR-based nanobiosensors. Nano Today . 2009;4(3):244–251. doi: 10.1016/j.nantod.2009.04.001. DOI
Cao E., Lin W. H., Sun M. T., Liang W. J., Song Y. Z. Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics . 2018;7(1):145–167. doi: 10.1515/nanoph-2017-0059. DOI
Liz-Marzan L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir . 2006;22(1):32–41. doi: 10.1021/la0513353. PubMed DOI
Stockman M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express . 2011;19(22):22029–22106. doi: 10.1364/oe.19.022029. PubMed DOI
Lu X. M., Rycenga M., Skrabalak S. E., Wiley B., Xia Y. N. Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. . 2009;60:167–192. doi: 10.1146/annurev.physchem.040808.090434. PubMed DOI
Akhmanov S. A., Vysloukh V. A., Chirkin A. S. Optics of Femtosecond Laser Pulses . United States: American Institute of Physics; 1992.
Haus H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. . 2000;6(6):1173–1185. doi: 10.1109/2944.902165. DOI
Weiner A. Ultrafast Optics . Hoboken NJ: John Wiley & Sons; 2009.
Lamb W. E. Theory of an optical maser. Phys. Rev. . 1964;134(6A):A1429. doi: 10.1103/physrev.134.a1429. DOI
Sutter D. H., Steinmeyer G., Gallmann L., Tschudi T. Semiconductor saturable-absorber mirror–assisted Kerr-lens mode-locked Ti: sapphire laser producing pulses in the two-cycle regime. Opt. Lett. . 1999;24(9):631–633. doi: 10.1364/ol.24.000631. PubMed DOI
Baltuška A., Wei Z., Pshenichnikov M. S., Wiersma D. A. Optical pulse compression to 5 fs at a 1-MHz repetition rate. Opt. Lett. . 1997;22(2):102–104. doi: 10.1364/ol.22.000102. PubMed DOI
Nisoli M., De Silvestri S., Svelto O., Krausz F. Compression of high-energy laser pulses below 5 fs. Opt. Lett. . 1997;22(8):522–524. doi: 10.1364/ol.22.000522. PubMed DOI
Maine P., Strickland D., Bado P., Pessot M., Mourou G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. . 1988;24(2):398–403. doi: 10.1109/3.137. DOI
Strickland D. Nobel Lecture: generating high-intensity ultrashort optical pulses. Rev. Mod. Phys. . 2019;91(3):030502. doi: 10.1103/revmodphys.91.030502. DOI
Fischer M. C., Wilson J. W., Robles F. E., Warren W. S. Invited review article: pump-probe microscopy. Rev. Sci. Instrum. . 2016;87(3):031101. doi: 10.1063/1.4943211. PubMed DOI PMC
Brabec T., Krausz F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. . 2000;72(2):545. doi: 10.1103/revmodphys.72.545. DOI
Zewail A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A . 2000;104(24):5660–5694. doi: 10.1021/jp001460h. PubMed DOI
Corkum P. á., Krausz F. Attosecond science. Nat. Phys. . 2007;3(6):381–387. doi: 10.1038/nphys620. DOI
Corkum P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. . 1993;71(13):1994. doi: 10.1103/PhysRevLett.71.1994. PubMed DOI
Lewenstein M., Balcou P., Ivanov M. Y., L’huillier A., Corkum P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A . 1994;49(3):2117. doi: 10.1103/physreva.49.2117. PubMed DOI
Chang Z., Rundquist A., Wang H., Murnane M. M., Kapteyn H. C. Generation of coherent soft X rays at 2.7 nm using high harmonics. Phys. Rev. Lett. . 1997;79(16):2967. doi: 10.1103/physrevlett.79.2967. DOI
Strickland D., Mourou G. Compression of amplified chirped optical pulses. Opt. Commun. . 1985;55(6):447–449. doi: 10.1016/0030-4018(85)90151-8. DOI
Seres J., Seres E., Verhoef A. J., et al. Source of coherent kiloelectronvolt X-rays. Nature . 2005;433(7026):596. doi: 10.1038/433596a. PubMed DOI
Gohle C., Udem Th., Herrmann M., et al. A frequency comb in the extreme ultraviolet. Nature . 2005;436(7048):234–237. doi: 10.1038/nature03851. PubMed DOI
Jones R. J., Moll K. D., Thorpe M. J., Ye J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. . 2005;94(19):193201. doi: 10.1103/physrevlett.94.193201. PubMed DOI
Kärtner F. X. Few-cycle Laser Pulse Generation and its Applications . Berlin, Heidelberg: Springer Science & Business Media; 2004.
Mauritsson J., Remetter T., Swoboda M., et al. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. . 2010;105(5):053001. doi: 10.1103/PhysRevLett.105.053001. PubMed DOI
Haessler S., Caillat J., Boutu W., et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. . 2010;6(3):200–206. doi: 10.1038/nphys1511. DOI
Heyderman L., Solak H., David C., Atkinson D., Cowburn R., Nolting F. Arrays of nanoscale magnetic dots: fabrication by x-ray interference lithography and characterization. Appl. Phys. Lett. . 2004;85(21):4989–4991. doi: 10.1063/1.1821649. DOI
Hänsch T. W. Nobel lecture: passion for precision. Rev. Mod. Phys. . 2006;78(4):1297. doi: 10.1103/revmodphys.78.1297. DOI
Ye J., Cundiff S. T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications . Boston, MA: Springer Science & Business Media; 2005.
Udem T., Holzwarth R., Hänsch T. W. Optical frequency metrology. Nature . 2002;416(6877):233–237. doi: 10.1038/416233a. PubMed DOI
Helbing F., Steinmeyer G., Stenger J., Telle H., Keller U. Carrier–envelope-offset dynamics and stabilization of femtosecond pulses. Appl. Phys. B . 2002;74(1):s35–s42. doi: 10.1007/s00340-002-0898-4. PubMed DOI
Telle H. R., Steinmeyer G., Dunlop A. E., Stenger J., Sutter D. H., Keller U. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B . 1999;69(4):327–332. doi: 10.1007/s003400050813. DOI
Minoshima K., Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. . 2000;39(30):5512–5517. doi: 10.1364/ao.39.005512. PubMed DOI
Coddington I., Swann W. C., Nenadovic L., Newbury N. R. Rapid and precise absolute distance measurements at long range. Nat. Photonics . 2009;3(6):351–356. doi: 10.1038/nphoton.2009.94. DOI
Murphy M. T., Udem Th., Holzwarth R., et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. Roy. Astron. Soc. . 2007;380(2):839–847. doi: 10.1111/j.1365-2966.2007.12147.x. DOI
Steinmetz T., Wilken T., Araujo-Hauck C., et al. Laser frequency combs for astronomical observations. Science . 2008;321(5894):1335–1337. doi: 10.1126/science.1161030. PubMed DOI
Rosenband T., Hume D. B., Schmidt P. O., et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science . 2008;319(5871):1808–1812. doi: 10.1126/science.1154622. PubMed DOI
Picqué N., Hänsch T. W. Frequency comb spectroscopy. Nat. Photonics . 2019;13(3):146–157. doi: 10.1038/s41566-018-0347-5. DOI
Udem T., Reichert J., Holzwarth R., Hänsch T. Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. . 1999;24(13):881–883. doi: 10.1364/ol.24.000881. PubMed DOI
Udem T., Reichert J., Holzwarth R., Hänsch T. Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser. Phys. Rev. Lett. . 1999;82(18):3568. doi: 10.1103/physrevlett.82.3568. DOI
Thorpe M. J., Balslev-Clausen D., Kirchner M. S., Ye J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express . 2008;16(4):2387–2397. doi: 10.1364/oe.16.002387. PubMed DOI
Peller D., Roelcke C., Kastner L. Z., et al. Quantitative sampling of atomic-scale electromagnetic waveforms. Nat. Photonics . 2021;15(2):143–147. doi: 10.1038/s41566-020-00720-8. DOI
Krausz F., Ivanov M. Attosecond physics. Rev. Mod. Phys. . 2009;81(1):163–234. doi: 10.1103/revmodphys.81.163. DOI
Uiberacker M., Uphues Th., Schultze M., et al. Attosecond real-time observation of electron tunnelling in atoms. Nature . 2007;446(7136):627–632. doi: 10.1038/nature05648. PubMed DOI
Midorikawa K. Ultrafast dynamic imaging. Nat. Photonics . 2011;5(11):640–641. doi: 10.1038/nphoton.2011.265. DOI
Paulus G. G., Nicklich W., Xu H. L., Lambropoulos P., Walther H. Plateau in above-threshold ionization spectra. Phys. Rev. Lett. . 1994;72(18):2851–2854. doi: 10.1103/physrevlett.72.2851. PubMed DOI
Schafer K. J., Yang B., Dimauro L. F., Kulander K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. . 1993;70(11):1599–1602. doi: 10.1103/physrevlett.70.1599. PubMed DOI
Li X. F., Lhuillier A., Ferray M., Lompre L. A., Mainfray G. Multiple-harmonic generation in rare-gases at high laser intensity. Phys. Rev. A . 1989;39(11):5751–5761. doi: 10.1103/physreva.39.5751. PubMed DOI
Mcpherson A., Gibson G., Jara H., et al. Studies of multiphoton production of vacuum ultraviolet-radiation in the rare-gases. J. Opt. Soc. Am. B . 1987;4(4):595–601. doi: 10.1364/josab.4.000595. DOI
Hentschel M., Kienberger R., Spielmann Ch., et al. Attosecond metrology. Nature . 2001;414(6863):509–513. doi: 10.1038/35107000. PubMed DOI
Krausz F., Stockman M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics . 2014;8(3):205–213. doi: 10.1038/nphoton.2014.28. DOI
Baltuska A., Udem Th., Uiberacker M., et al. Attosecond control of electronic processes by intense light fields. Nature . 2003;421(6923):611–615. doi: 10.1038/nature01414. PubMed DOI
Fedorov M. V., Keldysh’s L. V. Ionization in the field of a strong electromagnetic wave and modern physics of atomic interaction with a strong laser field. J. Exp. Theor. Phys. . 2016;122(3):449–455. doi: 10.1134/s1063776116030043. DOI
Reiss H. R. Complete Keldysh theory and its limiting cases. Phys. Rev. A . 1990;42(3):1476–1486. doi: 10.1103/physreva.42.1476. PubMed DOI
Garcia C. H. Coherent Attosecond Light Sources Based on High-Order Harmonic Generation: Influence of the Propagation effects, Ph.D. Thesis . Salamanca: Universidad de Salamanca; 2013.
Corkum P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. . 1993;71(13):1994–1997. doi: 10.1103/physrevlett.71.1994. PubMed DOI
Winterfeldt C., Spielmann C., Gerber G. Colloquium: optimal control of high-harmonic generation. Rev. Mod. Phys. . 2008;80(1):117–140. doi: 10.1103/revmodphys.80.117. DOI
Paulus G. G., Becker W., Nicklich W., Walther H. Rescattering effects in above-threshold ionization - a classical-model. J. Phys. B Atom. Mol. Opt. Phys. . 1994;27(21):L703–L708. doi: 10.1088/0953-4075/27/21/003. PubMed DOI
Vampa G., Hammond T. J., Thire N., Corkum P. B. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. . 2015;115(19):193606. doi: 10.1103/PhysRevLett.115.193603. PubMed DOI
Schmid C. P., Weigl L., Grossing P., Huber R. Tunable non-integer high-harmonic generation in a topological insulator. Nature . 2021;593(7859):385–390. doi: 10.1038/s41586-021-03466-7. PubMed DOI
Sudmeyer T., Marchese S. V., Hashimoto S., et al. Femtosecond laser oscillators for high-field science. Nat. Photonics . 2008;2(10):599–604. doi: 10.1038/nphoton.2008.194. DOI
Passlack S., Mathias S., Andreyev O., Mittnacht D., Aeschlimann M., Bauer M. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. . 2006;100(2):024912. doi: 10.1063/1.2217985. DOI
Wang F., Liu W., He L., et al. Macroscopic effect of plasmon-driven high-order-harmonic generation. Phys. Rev. A . 2017;96(3):033407. doi: 10.1103/physreva.96.033407. DOI
Husakou A., Im S. J., Herrmann J. Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A . 2011;83(4):043839. doi: 10.1103/physreva.83.043839. DOI
Shaaran T., Ciappina M. F., Lewenstein M. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement. Phys. Rev. A . 2012;86(2):023408. doi: 10.1103/physreva.86.023408. DOI
Stockman M. I., Faleev S. V., Bergman D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. . 2002;88(6):067402. doi: 10.1103/PhysRevLett.88.067402. PubMed DOI
Park I. Y., Kim S., Choi J., et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics . 2011;5(11):678–682. doi: 10.1038/nphoton.2011.258. DOI
Choi J., Kim S., Park I. Y., Lee D. H., Han S., Kim S. W. Generation of isolated attosecond pulses using a plasmonic funnel-waveguide. New J. Phys. . 2012;14(10):103038. doi: 10.1088/1367-2630/14/10/103038. DOI
Ciappina M. F., Acimovic S. S., Shaaran T., Biegert J., Quidant R., Lewenstein M. Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures. Opt. Express . 2012;20(24):26261–26274. doi: 10.1364/oe.20.026261. PubMed DOI
Sivis M., Duwe M., Abel B., Ropers C. Nanostructure-enhanced atomic line emission. Nature . 2012;485(7397):E1–E2. doi: 10.1038/nature10978. PubMed DOI
Kim S., Jin J., Kim Y. J., Park I. Y., Kim Y., Kim S. W. Nanostructure-enhanced atomic line emission reply. Nature . 2012;485(7397):E2–E3. doi: 10.1038/nature10979. PubMed DOI
Sivis M., Duwe M., Abel B., Ropers C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. . 2013;9(5):304–309. doi: 10.1038/nphys2590. DOI
Raschke M. B. High-harmonic generation with plasmonics: feasible or unphysical? Ann. Phys. . 2013;525(3):A40–A42. doi: 10.1002/andp.201300721. DOI
Ghimire S., DiChiara A. D., Sistrunk E., Agostini P., DiMauro L. F., Reis D. A. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. . 2011;7(2):138–141. doi: 10.1038/nphys1847. DOI
Kruchinin S. Y., Krausz F., Yakovlev V. S. Colloquium: strong-field phenomena in periodic systems. Rev. Mod. Phys. . 2018;90(2):021002. doi: 10.1103/revmodphys.90.021002. DOI
Ghimire S., Reis D. A. High-harmonic generation from solids. Nat. Phys. . 2019;15(1):10–16. doi: 10.1038/s41567-018-0315-5. DOI
You Y. S., Reis D. A., Ghimire S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. . 2017;13(4):345–349. doi: 10.1038/nphys3955. DOI
You Y. S., Yin Y., Wu Y., et al. High-harmonic generation in amorphous solids. Nat. Commun. . 2017;8(1):1–5. doi: 10.1038/s41467-017-00989-4. PubMed DOI PMC
Garg M., Kim H. Y., Goulielmakis E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photonics . 2018;12(5):291–296. doi: 10.1038/s41566-018-0123-6. DOI
Vampa G., Hammond T. J., Thire N., et al. Linking high harmonics from gases and solids. Nature . 2015;522(7557):462–464. doi: 10.1038/nature14517. PubMed DOI
Kim H., Han S., Kim Y. W., Kim S., Kim S. W. Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal. ACS Photonics . 2017;4(7):1627–1632. doi: 10.1021/acsphotonics.7b00350. DOI
Luu T., Garg M., Kruchinin S. Y., Moulet A., Hassan M. T., Goulielmakis E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature . 2015;521(7553):498–502. doi: 10.1038/nature14456. PubMed DOI
Ndabashimiye G., Ghimire S., Wu M., et al. Solid-state harmonics beyond the atomic limit. Nature . 2016;534(7608):520–523. doi: 10.1038/nature17660. PubMed DOI
Li L., Lan P., Zhu X., et al. Reciprocal-space-trajectory perspective on high-harmonic generation in solids. Phys. Rev. Lett. . 2019;122(19):193901. doi: 10.1103/physrevlett.122.193901. PubMed DOI
Tancogne-Dejean N., Mucke O. D., Kartner F. X., Rubio A. Ellipticity dependence of high-harmonic generation in solids originating from coupled intraband and interband dynamics. Nat. Commun. . 2017;8(1):1–10. doi: 10.1038/s41467-017-00764-5. PubMed DOI PMC
Ghimire S., DiChiara A. D., Sistrunk E., et al. Generation and propagation of high-order harmonics in crystals. Phys. Rev. A . 2012;85(4):043836. doi: 10.1103/physreva.85.043836. DOI
Vampa G., McDonald C. R., Orlando G., Klug D. D., Corkum P. B., Brabec T. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. . 2014;113(7):073901. doi: 10.1103/PhysRevLett.113.073901. PubMed DOI
Higuchi T., Stockman M. I., Hommelhoff P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. . 2014;113(21):213901. doi: 10.1103/physrevlett.113.213901. PubMed DOI
Yoshikawa N., Tamaya T., Tanaka K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science . 2017;356(6339):736–738. doi: 10.1126/science.aam8861. PubMed DOI
Liu H. Z., Li Y. L., You Y. S., Ghimire S., Heinz T. F., Reis D. A. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. . 2017;13(3):262–265. doi: 10.1038/nphys3946. DOI
Han S., Kim H., Kim Y. W., et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms13105. PubMed DOI PMC
Vampa G., Ghamsari B. G., Siadat Mousavi S., et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. . 2017;13(7):659–662. doi: 10.1038/nphys4087. DOI
Kern C., Zurch M., Spielmann C. Limitations of extreme nonlinear ultrafast nanophotonics. Nanophotonics . 2015;4(3):303–323. doi: 10.1515/nanoph-2015-0013. DOI
Niikura H., Legare F., Hasbani R., et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature . 2002;417(6892):917–922. doi: 10.1038/nature00787. PubMed DOI
Ihee H., Lobastov V. A., Gomez U. M., et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science . 2001;291(5503):458–462. doi: 10.1126/science.291.5503.458. PubMed DOI
Ropers C., Solli D. R., Schulz C. P., Lienau C., Elsaesser T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. . 2007;98(4):043907. doi: 10.1103/PhysRevLett.98.043907. PubMed DOI
Kruger M., Schenk M., Forster M., Hommelhoff P. Attosecond physics in photoemission from a metal nanotip. J. Phys. B Atom. Mol. Opt. Phys. . 2012;45(7):074006. doi: 10.1088/0953-4075/45/7/074006. DOI
Schenk M., Kruger M., Hommelhoff P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. . 2010;105(25):257601. doi: 10.1103/physrevlett.105.257601. PubMed DOI
Krüger M. Attosecond Physics in Strong-Field Photoemission from Metal nanotips, Diss. Lmu . 2013.
Turchetti M., Bionta M. R., Yang Y., et al. Impact of DC bias on weak optical-field-driven electron emission in nano-vacuum-gap detectors. J. Opt. Soc. Am. B . 2021;38(3):1009–1016. doi: 10.1364/josab.413680. DOI
Schoetz J., Wang Z., Pisanty E., Lewenstein M., Kling M. F., Ciappina M. F. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photonics . 2019;6(12):3057–3069. doi: 10.1021/acsphotonics.9b01188. DOI
Yang Y. J., Turchetti M., Vasireddy P., et al. Light phase detection with on-chip petahertz electronic networks. Nat. Commun. . 2020;11(1):1–11. doi: 10.1038/s41467-020-17250-0. PubMed DOI PMC
Ludwig M., Aguirregabiria G., Ritzkowsky F., et al. Sub-femtosecond electron transport in a nanoscale gap. Nat. Phys. . 2020;16(3):341–345. doi: 10.1038/s41567-019-0745-8. DOI
Rybka T., Ludwig M., Schmalz M. F., Knittel V., Brida D., Leitenstorfer A. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photonics . 2016;10(10):667–670. doi: 10.1038/nphoton.2016.174. DOI
Paasch-Colberg T., Schiffrin A., Karpowicz N., et al. Solid-state light-phase detector. Nat. Photonics . 2014;8(3):214–218. doi: 10.1038/nphoton.2013.348. DOI
Wimmer L., Herink G., Solli D. R., Yalunin S. V., Echternkamp K., Ropers C. Terahertz control of nanotip photoemission. Nat. Phys. . 2014;10(6):432–436. doi: 10.1038/nphys2974. DOI
Bormann R., Gulde M., Weismann A., Yalunin S. V., Ropers C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. . 2010;105(14):147601. doi: 10.1103/physrevlett.105.147601. PubMed DOI
Ahn B., Schotz J., Kang M., et al. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime. APL Photonics . 2017;2(3):036104. doi: 10.1063/1.4974529. DOI
Dombi P., Hörl A., Rácz P., et al. Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. . 2013;13(2):674–678. doi: 10.1021/nl304365e. PubMed DOI PMC
Sivis M., Pazos-Perez N., Yu R. W., Alvarez-Puebla R., de Abajo F. J. G., Ropers C. Continuous-wave multiphoton photoemission from plasmonic nanostars. Commun. Phys. . 2018;1(1):1–6. doi: 10.1038/s42005-018-0014-7. DOI
Xiong X., Zhou Y., Lul Y., et al. Plasmon-enhanced resonant photoemission using atomically thick dielectric coatings. ACS Nano . 2020;14(7):8806–8815. doi: 10.1021/acsnano.0c03406. PubMed DOI
Irvine S. E., Dechant A., Elezzabi A. Y. Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett. . 2004;93(18):184801. doi: 10.1103/physrevlett.93.184801. PubMed DOI
Dombi P., Racz P. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Opt. Express . 2008;16(5):2887–2893. doi: 10.1364/oe.16.002887. PubMed DOI
Teichmann S. M., Racz P., Ciappina M. F., Dombi P. Strong-field plasmonic photoemission in the mid-IR at< 1 GW/cm 2 intensity. Sci. Rep. . 2015;5(1):1–5. doi: 10.1038/srep07584. PubMed DOI PMC
Dombi P., Irvine S. E., Racz P., Elezzabi A. Y. Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt. Express . 2010;18(23):24206–24212. doi: 10.1364/oe.18.024206. PubMed DOI
Vogelsang J., Robin J., Nagy B. J., Lienau C. Ultrafast electron emission from a sharp metal nanotaper driven by adiabatic nanofocusing of surface plasmons. Nano Lett . 2015;15(7):4685–4691. doi: 10.1021/acs.nanolett.5b01513. PubMed DOI
Racz P., Papa Z., Marton I., Dombi P. Measurement of nanoplasmonic field enhancement with ultrafast photoemission. Nano Lett. . 2017;17(2):1181–1186. doi: 10.1021/acs.nanolett.6b04893. PubMed DOI
Budai J., Papa Z., Marton I., Dombi P. Plasmon–plasmon coupling probed by ultrafast, strong-field photoemission with < 7 Å sensitivity. Nanoscale . 2018;10(34):16261–16267. doi: 10.1039/c8nr04242j. PubMed DOI
Krüger M., Schenk M., Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature . 2011;475(7354):78–81. doi: 10.1038/nature10196. PubMed DOI
Herink G., Solli D. R., Gulde M., Ropers C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature . 2012;483(7388):190–193. doi: 10.1038/nature10878. PubMed DOI
Piglosiewicz B., Schmidt S., Park D. J., et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics . 2014;8(1):38–43. doi: 10.1038/nphoton.2013.288. DOI
Putnam W. P., Hobbs R. G., Keathley P. D., Berggren K. K., Kartner F. X. Optical-field-controlled photoemission from plasmonic nanoparticles. Nat. Phys. . 2017;13(4):335–339. doi: 10.1038/nphys3978. PubMed DOI PMC
Bionta M. R., Ritzkowsky F., Turchetti M., et al. On-chip sampling of optical fields with attosecond resolution. Nat. Photonics . 2021;15(6):456–460. doi: 10.1038/s41566-021-00792-0. DOI
Zimmermann P., Hotger A., Fernandez N., et al. Toward plasmonic tunnel gaps for nanoscale photoemission currents by on-chip laser ablation. Nano Lett. . 2019;19(2):1172–1178. doi: 10.1021/acs.nanolett.8b04612. PubMed DOI
Shankaran D. R., Gobi K. V., Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators, B, Chem. . 2007;121(1):158–177. doi: 10.1016/j.snb.2006.09.014. DOI
Habauzit D., Chopineau J., Roig B. SPR-based biosensors: a tool for biodetection of hormonal compounds. Anal. Bioanal. Chem. . 2007;387(4):1215–1223. doi: 10.1007/s00216-006-0958-4. PubMed DOI
Baeumner A. J. Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. . 2003;377(3):434–445. doi: 10.1007/s00216-003-2158-9. PubMed DOI
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. . 2008;108(2):462–493. doi: 10.1021/cr068107d. PubMed DOI
Hiep H. M., Endo T., Kerman K., et al. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci. Technol. Adv. Mater. . 2007;8(4):331–338. doi: 10.1016/j.stam.2006.12.010. DOI
McFarland A. D., Van Duyne R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. . 2003;3(8):1057–1062. doi: 10.1021/nl034372s. DOI
Metiu H. Surface enhanced spectroscopy. Prog. Surf. Sci. . 1984;17(3–4):153–320. doi: 10.1016/0079-6816(84)90017-0. DOI
Moskovits M. Surface-enhanced spectroscopy. Rev. Mod. Phys. . 1985;57(3):783. doi: 10.1103/revmodphys.57.783. DOI
Morton S. M., Jensen L. Understanding the molecule− surface chemical coupling in SERS. J. Am. Chem. Soc. . 2009;131(11):4090–4098. doi: 10.1021/ja809143c. PubMed DOI
Jensen L., Aikens C. M., Schatz G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. . 2008;37(5):1061–1073. doi: 10.1039/b706023h. PubMed DOI
Stiles P. L., Dieringer J. A., Shah N. C., Van Duyne R. P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. . 2008;1:601–626. doi: 10.1146/annurev.anchem.1.031207.112814. PubMed DOI
Schatz G. C., Young M. A., Van Duyne R. P. Surface-enhanced Raman Scattering . 2006. Electromagnetic mechanism of SERS; pp. 19–45.
Schatz G. C., Van Duyne R. P. Electromagnetic Mechanism of Surface-Enhanced Spectroscopy . Vol. 1. New York: Wiley; 2002. pp. 759–774.
Pérez-Jiménez A. I., Lyu D., Lu Z., Liu G., Ren B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. . 2020;11(18):4563–4577. doi: 10.1039/d0sc00809e. PubMed DOI PMC
Nie S., Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science . 1997;275(5303):1102–1106. doi: 10.1126/science.275.5303.1102. PubMed DOI
Lim D.-K., Jeon K.-S., Kim H. M., Nam J.-M., Suh Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. . 2010;9(1):60–67. doi: 10.1038/nmat2596. PubMed DOI
Diddams S. A., Vahala K., Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science . 2020;369(6501):267. doi: 10.1126/science.aay3676. PubMed DOI
Kippenberg T. J., Holzwarth R., Diddams S. A. Microresonator-based optical frequency combs. Science . 2011;332(6029):555–559. doi: 10.1126/science.1193968. PubMed DOI
Del’Haye P., Schliesser A., Arcizet O., Wilken T., Holzwarth R., Kippenberg T. J. Optical frequency comb generation from a monolithic microresonator. Nature . 2007;450(7173):1214–1217. PubMed
Fujii S., Tanabe T. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics . 2020;9(5):1087–1104. doi: 10.1515/nanoph-2019-0497. DOI
Hansson T., Wabnitz S. Dynamics of microresonator frequency comb generation: models and stability. Nanophotonics . 2016;5(2):231–243. doi: 10.1515/nanoph-2016-0012. DOI
Zhang M., Buscaino B., Wang C., et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature . 2019;568(7752):373–377. doi: 10.1038/s41586-019-1008-7. PubMed DOI
Wang C., Zhang M., Yu M., Zhu R., Hu H., Loncar M. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. . 2019;10(1):1–6. doi: 10.1038/s41467-019-08969-6. PubMed DOI PMC
Sakamoto T., Kawanishi T., Izutsu M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett. . 2007;32(11):1515–1517. doi: 10.1364/ol.32.001515. PubMed DOI
Kippenberg T., Spillane S., Vahala K. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. . 2004;93(8):083904. doi: 10.1103/PhysRevLett.93.083904. PubMed DOI
Savchenkov A. A., Matsko A. B., Strekalov D., Mohageg M., Ilchenko V. S., Maleki L. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. . 2004;93(24):243905. doi: 10.1103/physrevlett.93.243905. PubMed DOI
Haffner C., Chelladurai D., Fedoryshyn Y., et al. Low-loss plasmon-assisted electro-optic modulator. Nature . 2018;556(7702):483–486. doi: 10.1038/s41586-018-0031-4. PubMed DOI PMC
Liu M., Yin X., Ulin-Avila E., et al. A graphene-based broadband optical modulator. Nature . 2011;474(7349):64–67. doi: 10.1038/nature10067. PubMed DOI
Luo S., Wang Y., Tong X., Wang Z. Graphene-based optical modulators. Nanoscale Res. Lett. . 2015;10(1):1–11. doi: 10.1186/s11671-015-0866-7. PubMed DOI PMC
Yasui T., Kabetani Y., Saneyoshi E., Yokoyama S., Araki T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. . 2006;88(24):241104. doi: 10.1063/1.2209718. DOI
Consolino L., Taschin A., Bartolini P., et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. . 2012;3(1):1–5. doi: 10.1038/ncomms2048. PubMed DOI
Porat G., Heyl C. M., Schoun S. B., et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photonics . 2018;12(7):387–391. doi: 10.1038/s41566-018-0199-z. DOI
Cingöz A., Yost D. C., Allison T. K., et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature . 2012;482(7383):68–71. doi: 10.1038/nature10711. PubMed DOI
Changala P. B., Weichman M. L., Lee K. F., Fermann M. E., Ye J. Rovibrational quantum state resolution of the C60 fullerene. Science . 2019;363(6422):49–54. doi: 10.1126/science.aav2616. PubMed DOI
Thorpe M. J., Moll K. D., Jones R. J., Safdi B., Ye J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science . 2006;311(5767):1595–1599. doi: 10.1126/science.1123921. PubMed DOI
Ideguchi T., Holzner S., Bernhardt B., Guelachvili G., Picqué N., Hänsch T. W. Coherent Raman spectro-imaging with laser frequency combs. Nature . 2013;502(7471):355–358. doi: 10.1038/nature12607. PubMed DOI
Lomsadze B., Smith B. C., Cundiff S. T. Tri-comb spectroscopy. Nat. Photonics . 2018;12(11):676–680. doi: 10.1038/s41566-018-0267-4. DOI
Long D. A., Fleisher A. J., Plusquellic D. F., Hodges J. T. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys. Rev. A . 2016;94(6):061801. doi: 10.1103/PhysRevA.94.061801. PubMed DOI PMC
Nishiyama A., Nakajima Y., Nakagawa K. i., Minoshima K. Precise and highly-sensitive Doppler-free two-photon absorption dual-comb spectroscopy using pulse shaping and coherent averaging for fluorescence signal detection. Opt. Express . 2018;26(7):8957–8967. doi: 10.1364/oe.26.008957. PubMed DOI
Eckstein J., Ferguson A., Hänsch T. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. . 1978;40(13):847. doi: 10.1103/physrevlett.40.847. DOI
Mandon J., Guelachvili G., Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics . 2009;3(2):99–102. doi: 10.1038/nphoton.2008.293. DOI
Keilmann F., Gohle C., Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. . 2004;29(13):1542–1544. doi: 10.1364/ol.29.001542. PubMed DOI
Schmidt P. O., Hemmerling B., Brandstätter B., Nigg D. Fachorgan für Wirtschaft und Wissenschaft Amts-und Mitteilungsblatt der Physikalisch-Technischen Bundesanstalt Braunschweig und . Vol. 54. Berlin: PTB-Mitteilungen; 2009. Quantum logic for precision spectroscopy; pp. 54–59.
Diddams S. A., Hollberg L., Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature . 2007;445(7128):627–630. doi: 10.1038/nature05524. PubMed DOI
Morgenweg J., Barmes I., Eikema K. S. Ramsey-comb spectroscopy with intense ultrashort laser pulses. Nat. Phys. . 2014;10(1):30–33. doi: 10.1038/nphys2807. DOI
Griffiths P. R., De Haseth J. A. Fourier Transform Infrared Spectrometry . Hoboken, NJ: John Wiley & Sons; 2007.
Spaun B., Changala P. B., Patterson D., et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature . 2016;533(7604):517–520. doi: 10.1038/nature17440. PubMed DOI
Coddington I., Newbury N., Swann W. Dual-comb spectroscopy. Optica . 2016;3(4):414–426. doi: 10.1364/optica.3.000414. PubMed DOI PMC
Friedlein J. T., Baumann E., Briggman K. A., Cossel K. C. Dual-comb photoacoustic spectroscopy. Nat. Commun. . 2020;11(1):1–10. doi: 10.1038/s41467-020-16917-y. PubMed DOI PMC
Wildi T., Voumard T., Brasch V., Herr T. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun. . 2020;11(1):1–6. doi: 10.1364/es.2020.em2c.1. PubMed DOI PMC
Thorpe M. J., Ye J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B . 2008;91(3):397–414. doi: 10.1007/s00340-008-3019-1. PubMed DOI
Adler F., Thorpe M. J., Cossel K. C., Ye J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. . 2010;3:175–205. doi: 10.1146/annurev-anchem-060908-155248. PubMed DOI
Bernhardt B., Ozawa A., Jacquet P., et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics . 2010;4(1):55–57. doi: 10.1038/nphoton.2009.217. DOI
Savage K. J., Hawkeye M. M., Esteban R., Borisov A. G., Aizpurua J., Baumberg J. J. Revealing the quantum regime in tunnelling plasmonics. Nature . 2012;491(7425):574–577. doi: 10.1038/nature11653. PubMed DOI
Giorgetta F. R., Rieker G. B., Baumann E., et al. Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. . 2015;115(10):103901. doi: 10.1103/physrevlett.115.103901. PubMed DOI
Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. . 2008;7(6):442–453. doi: 10.1038/nmat2162. PubMed DOI
Otto L. M., Mohr D. A., Johnson T. W., Oh S.-H., Lindquist N. C. Polarization interferometry for real-time spectroscopic plasmonic sensing. Nanoscale . 2015;7(9):4226–4233. doi: 10.1039/c4nr06586g. PubMed DOI PMC
Gao Y., Gan Q., Xin Z., Cheng X., Bartoli F. J. Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano . 2011;5(12):9836–9844. doi: 10.1021/nn2034204. PubMed DOI
Morrill D., Li D., Pacifici D. Measuring subwavelength spatial coherence with plasmonic interferometry. Nat. Photonics . 2016;10(10):681–687. doi: 10.1038/nphoton.2016.162. DOI
Geng X. T., Chun B. J., Seo J. H., et al. Frequency comb transferred by surface plasmon resonance. Nat. Commun. . 2016;7(1):1–7. doi: 10.1038/ncomms10685. PubMed DOI PMC
Liu N., Hentschel M., Weiss T., Alivisatos A. P., Giessen H. Three-dimensional plasmon rulers. Science . 2011;332(6036):1407–1410. doi: 10.1126/science.1199958. PubMed DOI