Vapor-pressure-deficit-controlled temperature response of photosynthesis in tropical trees

. 2024 ; 62 (3) : 318-325. [epub] 20241010

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39649359

Rising temperatures can affect stomatal and nonstomatal control over photosynthesis, through stomatal closure in response to increasing vapor pressure deficit (VPD), and biochemical limitations, respectively. To explore the independent effects of temperature and VPD, we conducted leaf-level temperature-response measurements while controlling VPD on three tropical tree species. Photosynthesis and stomatal conductance consistently decreased with increasing VPD, whereas photosynthesis typically responded weakly to changes in temperature when a stable VPD was maintained during measurements, resulting in wide parabolic temperature-response curves. We have shown that the negative effect of temperature on photosynthesis in tropical forests across ecologically important temperature ranges does not stem from direct warming effects on biochemical processes but from the indirect effect of warming, through changes in VPD. Understanding the acclimation potential of tropical trees to elevated VPD will be critical to anticipate the consequences of global warming for tropical forests.

Zobrazit více v PubMed

Alonso-Blanco C., Aarts M.G.M., Bentsink L. et al.: What has natural variation taught us about plant development, physiology, and adaptation? – Plant Cell 21: 1877-1896, 2009. 10.1105/tpc.109.068114 PubMed DOI PMC

Araújo M., Ferreira de Oliveira J.M.P., Santos C. et al.: Responses of olive plants exposed to different irrigation treatments in combination with heat shock: physiological and molecular mechanisms during exposure and recovery. – Planta 249: 1583-1598, 2019. 10.1007/s00425-019-03109-2 PubMed DOI

Arnold A.E., Engelbrecht B.M.J.: Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. – J. Trop. Ecol. 23: 369-372, 2007. 10.1017/S0266467407004038 DOI

Barkhordarian A., Saatchi S.S., Behrangi A. et al.: A recent systematic increase in vapor pressure deficit over tropical South America. – Sci. Rep.-UK 9: 15331, 2019. 10.1038/s41598-019-51857-8 PubMed DOI PMC

Beer C., Reichstein M., Tomelleri E. et al.: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. – Science 329: 834-838, 2010. 10.1126/science.1184984 PubMed DOI

Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants. – Annu. Rev. Plant Physiol. 31: 491-543, 1980. 10.1146/annurev.pp.31.060180.002423 DOI

Breshears D.D., Adams H.D., Eamus D. et al.: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. – Front. Plant Sci. 4: 266, 2013. 10.3389/fpls.2013.00266 PubMed DOI PMC

Buckley T.N.: How do stomata respond to water status? – New Phytol. 224: 21-36, 2019. 10.1111/nph.15899 PubMed DOI

Bueno A., Alfarhan A., Arand K. et al.: Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. – J. Exp. Bot. 70: 1613-1625, 2019. 10.1093/jxb/erz018 PubMed DOI PMC

Bueno A., Sancho-Knapik D., Gil-Pelegrín E. et al.: Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? – Tree Physiol. 40: 827-840, 2020. 10.1093/treephys/tpz110 PubMed DOI

Clark D.A., Clark D.B., Oberbauer S.F.: Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. – J. Geophys. Res.: Biogeo. 118: 783-794, 2013. 10.1002/jgrg.20067 DOI

Clark D.A., Piper S.C., Keeling C.D., Clark D.B.: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. – PNAS 100: 5852-5857, 2003. 10.1073/pnas.0935903100 PubMed DOI PMC

Clark D.B., Clark D.A., Oberbauer S.F.: Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. – Glob. Change Biol. 16: 747-759, 2010. 10.1111/j.1365-2486.2009.02004.x DOI

Corlett R.T.: Impacts of warming on tropical lowland rainforests. – Trends Ecol. Evol. 26: 606-613, 2011. 10.1016/j.tree.2011.06.015 PubMed DOI

Crous K.Y., Uddling J., De Kauwe M.G.: Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. – New Phytol. 234: 353-374, 2022. 10.1111/nph.17951 PubMed DOI PMC

Dusenge M.E., Wittemann M., Mujawamariya M. et al.: Limited thermal acclimation of photosynthesis in tropical montane tree species. – Glob. Change Biol. 27: 4860-4878, 2021. 10.1111/gcb.15790 PubMed DOI

Duursma R.A.: Plantecophys – an R package for analysing and modelling leaf gas exchange data. – PLoS ONE 10: e0143346, 2015. 10.1371/journal.pone.0143346 PubMed DOI PMC

Duursma R.A., Blackman C.J., Lopez R. et al.: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. – New Phytol. 221: 693-705, 2019. 10.1111/nph.15395 PubMed DOI

Eamus D., Boulain N., Cleverly J., Breshears D.D.: Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. – Ecol. Evol. 3: 2711-2729, 2013. 10.1002/ece3.664 PubMed DOI PMC

Eamus D., Taylor D.T., Macinnis-Ng C.M.O. et al.: Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. – Plant Cell Environ. 31: 269-277, 2008. 10.1111/j.1365-3040.2007.01771.x PubMed DOI

Fauset S., Freitas H.C., Galbraith D.R. et al.: Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. – Plant Cell Environ. 41: 1618-1631, 2018. 10.1111/pce.13208 PubMed DOI PMC

Fredeen A.L., Sage R.F.: Temperature and humidity effects on branchlet gas exchange in white spruce: an explanation for the increase in transpiration with branchlet temperature. – Trees-Struct. Funct. 14: 161-168, 1999. 10.1007/s004680050220 DOI

Gharun M., Hörtnagl L., Paul-Limoges E. et al.: Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. – Philos. T. Roy. Soc. B 375: 20190521, 2020. 10.1098/rstb.2019.0521 PubMed DOI PMC

Gora E.M., Esquivel-Muelbert A.: Implications of size-dependent tree mortality for tropical forest carbon dynamics. – Nat. Plants 7: 384-391, 2021. 10.1038/s41477-021-00879-0 PubMed DOI

Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. – Plant Cell Environ. 28: 834-849, 2005. 10.1111/j.1365-3040.2005.01333.x DOI

Grossiord C., Buckley T.N., Cernusak L.A. et al.: Plant responses to rising vapor pressure deficit. – New Phytol. 226: 1550-1566, 2020. 10.1111/nph.16485 PubMed DOI

Gunderson C.A., O'Hara K.H., Campion C.M. et al.: Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. – Glob. Change Biol. 16: 2272-2286, 2010. 10.1111/j.1365-2486.2009.02090.x DOI

Hammond W.M., Williams A.P., Abatzoglou J.T. et al.: Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. – Nat. Commun. 13: 1761, 2022. 10.1038/s41467-022-29289-2 PubMed DOI PMC

Hikosaka K., Ishikawa K., Borjigidai A. et al.: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. – J. Exp. Bot. 57: 291-302, 2006. 10.1093/jxb/erj049 PubMed DOI

Huang M., Piao S., Ciais P. et al.: Air temperature optima of vegetation productivity across global biomes. – Nat. Ecol. Evol. 3: 772-779, 2019. 10.1038/s41559-019-0838-x PubMed DOI PMC

Kumarathunge D.P., Drake J.E., Tjoelker M.G. et al.: The temperature optima for tree seedling photosynthesis and growth depend on water inputs. – Glob. Change Biol. 26: 2544-2560, 2020. 10.1111/gcb.14975 PubMed DOI

Kumarathunge D.P., Medlyn B.E., Drake J.E. et al.: Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. – New Phytol. 222: 768-784, 2019. 10.1111/nph.15668 PubMed DOI

Leverett A., Kromdijk J.: The long and tortuous path towards improving photosynthesis by engineering elevated mesophyll conductance. – Plant Cell Environ. 47: 3411-3427, 2024. 10.1111/pce.14940 PubMed DOI

Malhi Y., Roberts J.T., Betts R.A. et al.: Climate change, deforestation, and the fate of the Amazon. – Science 319: 169-172, 2008. 10.1126/science.1146961 PubMed DOI

Marchin R.M., Broadhead A.A., Bostic L.E. et al.: Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. – Plant Cell Environ. 39: 2221-2234, 2016. 10.1111/pce.12790 PubMed DOI

Medlyn B.E., Duursma R.A., Eamus D. et al.: Reconciling the optimal and empirical approaches to modelling stomatal conductance. – Glob. Change Biol. 17: 2134-2144, 2011. 10.1111/j.1365-2486.2010.02375.x DOI

Middleby K.B., Cheesman A.W., Cernusak L.A.: Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. – New Phytol. 243: 648-661, 2024. 10.1111/nph.19822 PubMed DOI

Mills C., Bartlett M.K., Buckley T.N.: The poorly-explored stomatal response to temperature at constant evaporative demand. – Plant Cell Environ. 47: 3428-3446, 2024. 10.1111/pce.14911 PubMed DOI

Mott K.A., Peak D.: Stomatal responses to humidity and temperature in darkness. – Plant Cell Environ. 33: 1084-1090, 2010. 10.1111/j.1365-3040.2010.02129.x PubMed DOI

Niinemets Ü., Díaz-Espejo A., Flexas J. et al.: Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. – J. Exp. Bot. 60: 2271-2282, 2009. 10.1093/jxb/erp063 PubMed DOI

Padfield D., Matheson G.: Package ‘nls.multstart’. Robust non-linear regression using AIC scores, 2018. Available at: https://cran.r-project.org/package=nls.multstart.

Paton S.: Yearly Reports_Parque Natural Metropolitano Crane. Smithsonian Tropical Research Institute, Dataset, 2020. 10.25573/data.11799348.v5 DOI

Pau S., Detto M., Kim Y., Still C.J.: Tropical forest temperature thresholds for gross primary productivity. – Ecosphere 9: e02311, 2018. 10.1002/ecs2.2311 DOI

Peguero-Pina J.J., Aranda I., Cano F.J. et al.: The role of mesophyll conductance in oak photosynthesis: among- and within-species variability. – In: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (ed.): Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology. Vol. 7. Pp. 303-325. Springer, Cham: 2017. 10.1007/978-3-319-69099-5_9 DOI

Peters R.L., Kaewmano A., Fu P.-L: et al.: High vapour pressure deficit enhances turgor limitation of stem growth in an Asian tropical rainforest tree. – Plant Cell Environ. 46: 2747-2762, 2023. 10.1111/pce.14661 PubMed DOI

R Development Core Team: R: A language and environment for statistical computing. Version 4.1.2. R Foundation for Statistical Computing, Vienna 2021. Available at: https://www.r-project.org/.

Rey-Sánchez A.C., Slot M., Posada J.M., Kitajima K.: Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. – Clim. Res. 71: 75-89, 2016. 10.3354/cr01427 DOI

Riederer M.: Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. – J. Exp. Bot. 57: 2937-2942, 2006. 10.1093/jxb/erl053 PubMed DOI

Rowland L., Harper A., Christoffersen B.O. et al.: Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. – Geosci. Model Dev. 8: 1097-1110, 2015. 10.5194/gmd-8-1097-2015 DOI

Sadok W., Lopez J.R., Smith K.P.: Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. – Plant Cell Environ. 44: 2102-2116, 2021. 10.1111/pce.13970 PubMed DOI

Scafaro A.P., Posch B.C., Evans J.R. et al.: Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. – Nature Commun. 14: 2820, 2023. 10.1038/s414647477-023-38496-4 PubMed DOI PMC

Schönbeck L.C., Schuler P., Lehmann M.M. et al.: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought. – Plant Cell Environ. 45: 3275-3289, 2022. 10.1111/pce.14425 PubMed DOI PMC

Schuster A.-C., Burghardt M., Riederer M.: The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? – J. Exp. Bot. 68: 5271-5279, 2017. 10.1093/jxb/erx321 PubMed DOI

Slot M., Nardwattanawong T., Hernández G.G. et al.: Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. – New Phytol. 232: 1618-1631, 2021. 10.1111/nph.17626 PubMed DOI PMC

Slot M., Rifai S.W., Eze C.E., Winter K.: The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. – New Phytol., 2024. 10.1111/nph.19806 PubMed DOI

Slot M., Winter K.: The effects of rising temperature on the ecophysiology of tropical forest trees. – In: Goldstein G., Santiago L.S. (ed.): Tropical Tree Physiology. Tree Physiology. Vol. 6. Pp. 385-412. Springer, Cham: 2016. 10.1007/978-3-319-27422-5_18 DOI

Slot M., Winter K.: In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. – New Phytol. 214: 1103-1117, 2017a. 10.1111/nph.14469 PubMed DOI

Slot M., Winter K.: In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. – Plant Cell Environ. 40: 3055-3068, 2017b. 10.1111/pce.13071 PubMed DOI

Slot M., Winter K.: Photosynthetic acclimation to warming in tropical forest tree seedlings. – J. Exp. Bot. 68: 2275-2284, 2017c. 10.1093/jxb/erx071 PubMed DOI PMC

Smith M.N., Taylor T.C., van Haren J. et al.: Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. – Nat. Plants 6: 1225-1230, 2020. 10.1038/s41477-020-00780-2 PubMed DOI

Stovall A.E.L., Shugart H., Yang X.: Tree height explains mortality risk during an intense drought. – Nat. Commun. 10: 4385, 2019. 10.1038/s41467-019-12380-6 PubMed DOI PMC

Sullivan M.J.P., Lewis S.L., Affum-Baffoe K. et al.: Long-term thermal sensitivity of Earth’s tropical forests. – Science 368: 869-874, 2020. 10.1126/science.aaw7578 PubMed DOI

Tan Z.-H., Zeng J., Zhang Y.-J. et al.: Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming. – Environ. Res. Lett. 12: 054022, 2017. 10.1088/1748-9326/aa6f97 DOI

Tomás M., Flexas J., Copolovici L. et al.: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. – J. Exp. Bot. 64: 2269-2281, 2013. 10.1093/jxb/ert086 PubMed DOI PMC

Urban J., Ingwers M., McGuire M.A., Teskey R.O.: Stomatal conductance increases with rising temperature. – Plant Signal. Behav. 12: e1356534, 2017. 10.1080/15592324.2017.1356534 PubMed DOI PMC

Vogel S.: Leaves in the lowest and highest winds: temperature, force and shape. – New Phytol. 183: 13-26, 2009. 10.1111/j.1469-8137.2009.02854.x PubMed DOI

von Caemmerer S., Evans J.R.: Temperature responses of mesophyll conductance differ greatly between species. – Plant Cell Environ. 38: 629-637, 2015. 10.1111/pce.12449 PubMed DOI

Yuan W., Zheng Y., Piao S. et al.: Increased atmospheric vapor pressure deficit reduces global vegetation growth. – Sci. Adv. 5: eaax1396, 2019. 10.1126/sciadv.aax1396 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...