Detection of antibiotic and microplastic pollutants in Chrysanthemum coronarium L. based on chlorophyll fluorescence
Status PubMed-not-MEDLINE Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
39649388
PubMed Central
PMC11558592
DOI
10.32615/ps.2022.035
PII: PS60489
Knihovny.cz E-resources
- Keywords
- OJIP transients, antibiotics, food security, microplastics, modeling, vegetable quality detection,
- Publication type
- Journal Article MeSH
Large amounts of antibiotics and microplastics are used in daily life and agricultural production, which affects not only plant growth but also potentially the food safety of vegetables and other plant products. Fast detection of the presence of antibiotics and microplastics in leafy vegetables is of great interest to the public. In this work, a method was developed to detect sulfadiazine and polystyrene, commonly used antibiotics and microplastics, in vegetables by measuring and modeling photosystem II chlorophyll a fluorescence (ChlF) emission from leaves. Chrysanthemum coronarium L., a common beverage and medicinal plant, was used to verify the developed method. Scanning electron microscopy, transmission electron microscopy, and liquid chromatograph-mass spectrometer analysis were used to show the presence of the two pollutants in the samples. The developed kinetic model could describe measured ChlF variations with an average relative error of 0.6%. The model parameters estimated for the chlorophyll a fluorescence induction kinetics curve (OJIP) induction can differentiate the two types of stresses while the commonly used ChlF OJIP induction characteristics cannot. This work provides a concept to detect antibiotic pollutants and microplastic pollutants in vegetables based on ChlF.
See more in PubMed
Antal T.K., Kovalenko H.B., Rubin A.B., Tyystjärvi E.: Photosynthesis-related quantities for education and modeling. – Photosynth. Res. 117: 1-30, 2013. 10.1007/s11120-013-9945-8 PubMed DOI
Chen J.F., Jiang X.S., Tong T.L. et al.: Sulfadiazine degradation in soils: Dynamics, functional gene, antibiotic resistance genes and microbial community. – Sci. Total Environ. 691: 1072-1081, 2019. 10.1016/j.scitotenv.2019.07.230 PubMed DOI
Ebenhöh O., Fucile G., Finazzi G. et al.: Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. – Philos. T. Roy. Soc. B 369: 20130223, 2014. 10.1098/rstb.2013.0223 PubMed DOI PMC
Ezugworie F.N., Igbokwe V.C., Onwosi C.O.: Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. – Sci. Total Environ. 784: 147191, 2021. 10.1016/j.scitotenv.2021.147191 PubMed DOI
Fan Y.M., Shi J.Y., Gao L.J.: [The source and detection of microplastics in soil systems.] – Chem. Ind. Times 33: 28-31, 2019. [In Chinese] 10.16597/j.cnki.issn.1002-154x.2019.06.009 DOI
Fu L.J., Govindjee, Tan J.L., Guo Y.: Development of a minimized model structure and a feedback control framework for regulating photosynthetic activities. – Photosynth. Res. 146: 213-225, 2019b. 10.1007/s11120-019-00690-1 PubMed DOI
Fu L.J., Xia Q., Tan J.L. et al.: Modelling and simulation of chlorophyll fluorescence from PSII of a plant leaf as affected by both illumination light intensities and temperatures. – IET Syst. Biol. 13: 327-332, 2019a. 10.1049/iet-syb.2019.0039 PubMed DOI PMC
Gu L.Q., Tian L., Gao G. et al.: Inhibitory effects of polystyrene microplastics on caudal fin regeneration in zebrafish larvae. – Environ. Pollut. 266: 114664, 2020. 10.1016/j.envpol.2020.114664 PubMed DOI
Guo Y., Tan J.: Modeling and simulation of the initial phases of chlorophyll fluorescence from photosystem II. – BioSystems 103: 152-157, 2011. 10.1016/j.biosystems.2010.10.008 PubMed DOI
Hwang J., Choi D., Han S. et al.: Potential toxicity of polystyrene microplastic particles. – Sci. Rep.-UK 10: 7391, 2020. 10.1038/s41598-020-64464-9 PubMed DOI PMC
Joseph R., Kumar K.G.: Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. – Drug Test. Anal. 2: 278-283, 2010. 10.1002/dta.129 PubMed DOI
Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. – Acta Physiol. Plant. 38: 102, 2016. 10.1007/s11738-016-2113-y DOI
Kalaji H.M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. – Photosynthetica 56: 953-961, 2018. 10.1007/s11099-018-0766-z DOI
Khan K.Y., Ali B., Shuang Z. et al.: Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. – Sci. Total Environ. 778: 146333, 2021. 10.1016/j.scitotenv.2021.146333 PubMed DOI
Lang Y., Wang M., Xia J.B., Zhao Q.K.: Effects of soil drought stress on photosynthetic gas exchange traits and chlorophyll fluorescence in Forsythia suspensa. – J. Forestry Res. 29: 45-53, 2018. 10.1007/s11676-017-0420-9 DOI
Levenberg K.: A method for the solution of certain problems in least squares. – Quart. Appl. Math. 2: 164-168, 1944. 10.1090/qam/10666 DOI
Li C.C., Gan Y.D., Zhang C. et al.: “Microplastic communities” in different environments: Differences, links, and role of diversity index in source analysis. – Water Res. 188: 116574, 2021a. 10.1016/j.watres.2020.116574 PubMed DOI
Li L., Zhou Q., Yin N. et al.: Uptake and accumulation of microplastics in an edible plant. – Chin. Sci. Bull. 64: 928-934, 2019. [In Chinese]
Li M., Yang Z.W., Li H.J. et al.: [Investigation and analysis of antibiotic contamination in vegetables in Eastern Hebei.] – Contemp. Farm Mach. 3: 54-56, 2021b. [In Chinese] https://caod.oriprobe.com/articles/60784031/ji_dong_di_qu_shu_cai_zhong_kang_sheng_su_wu_ran_z.htm
Li X.D., Xian Q.M., Liu H.L. et al.: [Simultaneous determination of three sulfonamides residues in vegetable by high performance liquid chromatographic method with fluorimetric detection.] – Chin. J. Anal. Chem. 38: 429-433, 2010. [In Chinese] 10.3724/SP.J.1096.2010.00429 DOI
Li X.W., Xie Y.F., Li C.L. et al.: Investigation of residual fluoroquinolones in a soil–vegetable system in an intensive vegetable cultivation area in Northern China. – Sci. Total Environ. 468-469: 258-264, 2014. 10.1016/j.scitotenv.2013.08.057 PubMed DOI
Li X.X., Liu B.X., Guo Z.T. et al.: [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves.] – Chin. J. Appl. Ecol. 24: 2479-2484, 2013. [In Chinese] 10.13287/j.1001-9332.2013.0494 PubMed DOI
Lin H., Sun W.C., Yu Y.J. et al.: Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. – Sci. Total Environ. 788: 147830, 2021. 10.1016/j.scitotenv.2021.147830 PubMed DOI
Lin Y.C., Hu Y.G., Ren C.Z. et al.: Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. – J. Integr. Agr. 12: 2164-2171, 2013. 10.1016/S2095-3119(13)60346-9 DOI
Liu X., Lv Y., Xu K. et al.: Response of ginger growth to a tetracycline-contaminated environment and residues of antibiotic and antibiotic resistance genes. – Chemosphere 201: 137-143, 2018. 10.1016/j.chemosphere.2018.02.178 PubMed DOI
Lotfi R., Pessarakli M., Gharavi-Kouchebagh P., Khoshvaghti H.: Physiological responses of Brassica napus to fulvic acid under water stress: chlorophyll a fluorescence and antioxidant enzyme activity. – Crop J. 3: 434-439, 2015. 10.1016/j.cj.2015.05.006 DOI
Mandal K., Saravanan R., Maiti S., Kothari I.L.: Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. – J. Plant Dis. Prot. 116: 164-168, 2009. 10.1007/BF03356305 DOI
Marquardt D.W.: An algorithm for least-squares estimation of non-linear parameters. – J. Soc. Ind. Appl. Math. 11: 431-441, 1963. 10.1137/0111030 DOI
Peez N., Janiska M.-C., Imhof W.: The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS). – Anal. Bioanal. Chem. 411: 823-833, 2019. 10.1007/s00216-018-1510-z PubMed DOI
Pflugmacher S., Sulek A., Mader H. et al.: The influence of new and artificial aged microplastic and leachates on the germination of Lepidium sativum L. – Plants-Basel 9: 339, 2020. 10.3390/plants9030339 PubMed DOI PMC
Qi H.M., Yan H., Zhang L. et al.: [Research progress in determination methods of antibiotics residues in plants.] – J. Food Saf. Qual. 10: 5098-5103, 2019. [In Chinese] 10.3969/j.issn.2095-0381.2019.15.042 DOI
Rehm R., Zeyer T., Schmidt A., Fiener P.: Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. – Sci. Total Environ. 795: 148774, 2021. 10.1016/j.scitotenv.2021.148774 PubMed DOI
Sajjad M., Huang Q., Khan S. et al.: Microplastics in the soil environment: A critical review. – Environ. Technol. Innov. 27: 102408, 2022. 10.1016/j.eti.2022.102408 DOI
Si X.Y., Sun M., Shi C.C. et al.: [Environmental behavior of sulfa antibiotics (SAs) and its effect on vegetable quality.] – Anhui Agr. Sci. Bull. 23: 40-42, 2017. [In Chinese] 10.3969/j.issn.1007-7731.2017.20.017 DOI
Sobhani Z., Panneerselvan L., Fang C. et al.: Chronic and transgenerational effects of polystyrene microplastics at environmentally relevant concentrations in earthworms (Eisenia fetida). – Environ. Toxicol. Chem. 40: 2240-2246, 2021. 10.1002/etc.5072 PubMed DOI
Stirbet A., Govindjee: The slow phase of chlorophyll a fluorescence induction in silico: Origin of the S–M fluorescence rise. – Photosynth. Res. 130: 193-213, 2016. 10.1007/s11120-016-0243-0 PubMed DOI
Stock V., Böhmert L., Lisicki E. et al.: Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. – Arch. Toxicol. 93: 1817-1833, 2019. 10.1007/s00204-019-02478-7 PubMed DOI
Sui X.L., Mao S.L., Wang L.H. et al.: Effect of low light on the characteristics of photosynthesis and chlorophyll a fluorescence during leaf development of sweet pepper. – J. Integr. Agr. 11: 1633-1643, 2012. 10.1016/S2095-3119(12)60166-X DOI
Tang J.J., Chen X., Katsuyoshi S.: Varietal differences in photosynthetic characters and chlorophyll fluorescence induction kinetics parameters among intergeneric progeny derived from Oryza×Sorghum‚ its parents‚ and hybrid rice. – J. Zhejiang Univ. Sci. 3: 113-117, 2002. 10.1007/BF02881854 DOI
Wang F., Zhang X., Zhang S. et al.: Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. – Chemosphere 254: 126791, 2020. 10.1016/j.chemosphere.2020.126791 PubMed DOI
Wang G.L., Guo Z.F.: Effects of chilling stress on photosynthetic rate and chlorophyll fluorescence parameter in seedlings of two rice cultivars differing in cold tolerance. – Rice Sci. 12: 187-191, 2005. http://qikan.cqvip.com/Qikan/Article/Detail?id=20814632
Wu Y.W., Li Q., Jin R. et al.: Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. – J. Integr. Agr. 18: 1246-1256, 2019. 10.1016/S2095-3119(18)62030-1 DOI
Xiang X.F., Wu L.Y., Zhu J.J. et al.: Photocatalytic degradation of sulfadiazine in suspensions of TiO2 nanosheets with exposed (001) facets. – Chin. Chem. Lett. 32: 3215-3220, 2021. 10.1016/j.cclet.2021.03.064 DOI
Xie Y.F., Cai X.L., Liu W.L. et al.: Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress. – J. Rare Earth. 31: 823-829, 2013. 10.1016/S1002-0721(12)60365-2 DOI
Ye B., Wu Y.B., Shao W. et al.: [Effects of combined stress of elevated temperature and drought and of re-watering on the photosynthetic characteristics and chlorophyll fluorescence parameters of Broussonetia papyrifera seedlings.] – Chin. J. Ecol. 33: 2343-2349, 2014. [In Chinese] 10.13292/j.1000-4890.2014.0145 DOI
Zhang H.B., Wang J.Q., Zhou B.Y. et al.: Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. – Environ. Pollut. 243: 1550-1557, 2018. 10.1016/j.envpol.2018.09.122 PubMed DOI
Zhao H.M., Huang H.B., Du H. et al.: Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). – J. Hazard. Mater. 349: 252-261, 2018. 10.1016/j.jhazmat.2018.01.015 PubMed DOI
Zhu X.G., Govindjee, Baker N.R. et al.: Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. – Planta 223: 114-133, 2005. 10.1007/s00425-005-0064-4 PubMed DOI