Entomopathogenic Fungi as Mortality Agents in Insect Populations: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39650537
PubMed Central
PMC11620982
DOI
10.1002/ece3.70666
PII: ECE370666
Knihovny.cz E-zdroje
- Klíčová slova
- Entomophthorales, Hypocreales, mycosis, population regulation, systematic review,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Natural enemies play a key role in population dynamics of insects and exert significant selective pressures on various traits of these animals. Although there is a wealth of empirical and theoretical research on predators and parasitoids, the ecological role of pathogens (other than viruses) remains less understood. Entomopathogenic fungi (EPF), encompassing over 1000 known species from 11 phyla, have primarily been studied in the context of biocontrol in agroecosystems, while their role in natural ecosystems is poorly known. In this paper, we synthesize case studies reporting the prevalence of EPF infections in field populations of insects. We examine differences in this variable among major host taxa and those of the pathogens. From 79 case studies that met our selection criteria, we retrieved data on 122 species of fungi infecting 104 insect species. The meta-analytic median prevalence of fungal infections was 8.2%; even if likely inflated by publication bias, this suggests that EPF-induced mortality levels are lower than those attributable to predators and parasitoids. We found no substantial differences in fungal prevalence among major insect taxa and only a moderate difference among fungal orders, with Neozygitales showing the highest prevalence and Eurotiales the lowest. Our analysis revealed no significant differences in overall EPF prevalence between tropical and temperate studies, although different fungal taxa showed different geographical patterns. In temperate areas, there is some evidence of increasing infection prevalence toward the end of the growing season. Although quantitative data on the effect of EPF on insect populations are still scarce, evidence is consistent with the emerging generalization that insect populations commonly harbor species-rich assemblages of pathogenic fungi, but infections rarely reach epidemic levels. Further studies on multi-species assemblages of EPF associated with natural insect populations are needed to better understand the ecological role of fungal infections.
Zobrazit více v PubMed
Abney, M. R. , Ruberson J. R., Herzog G. A., Kring T. J., Steinkraus D. C., and Roberts P. M.. 2008. “Rise and Fall of Cotton Aphid (Hemiptera: Aphididae) Populations in Southeastern Cotton Production Systems.” Journal of Economic Entomology 101, no. 1: 23–35. 10.1603/0022-0493(2008)101[23:rafoca]2.0.co;2. PubMed DOI
Akıner, M. M. , Öztürk M., Güney İ., and Usta A.. 2020. “Natural Infection Potential and Efficacy of the Entomopathogenic Fungus Beauveria Bassiana Against Orosanga Japonica (Melichar).” Egyptian Journal of Biological Pest Control 30, no. 1: 68. 10.1186/s41938-020-00269-2. DOI
Alves, L. F. A. , Gassen M. H., Pinto F. G. S., Neves P. M. O. J., and Alves S. B.. 2005. “Natural Occurrence of Beauveria Bassiana (Bals.) Vuilleman (Moniliales: Moniliaceae) on the Lesser Mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), in a Poultry House in Cascavel, PR.” Neotropical Entomology 34: 507–510. 10.1590/S1519-566X2005000300021. DOI
Amatuzzi, R. F. , Cardoso N., Poltronieri A. S., et al. 2017. “Potential of Endophytic Fungi as Biocontrol Agents of Duponchelia fovealis (Zeller) (Lepidoptera:Crambidae).” Brazilian Journal of Biology 78: 429–435. 10.1590/1519-6984.166681. PubMed DOI
Araújo, J. P. M. , and Hughes D. P.. 2016. “Chapter One ‐ Diversity of Entomopathogenic Fungi: Which Groups Conquered the Insect Body?” In Advances in Genetics, edited by Lovett B. and St. Leger R. J., vol. 94, 1–39. San Diego: Academic Press. 10.1016/bs.adgen.2016.01.001. PubMed DOI
Barta, M. , and Cagáň L.. 2003. “Entomophthoralean Fungi Associated With the Common Nettle Aphid (Microlophium Carnosum Buckton) and the Potential Role of Nettle Patches as Reservoirs for the Pathogens in Landscape.” Journal of Pest Science 76: 6–13. 10.1046/j.1439-0280.2003.03004.x. DOI
Bonsall, M. B. 2004. “The Impact of Diseases and Pathogens on Insect Population Dynamics.” Physiological Entomology 29, no. 3: 223–236. 10.1111/j.0307-6962.2004.00389.x. DOI
Boomsma, J. J. , Jensen A. B., Meyling N. V., and Eilenberg J.. 2014. “Evolutionary Interaction Networks of Insect Pathogenic Fungi.” Annual Review of Entomology 59, no. 1: 467–485. 10.1146/annurev-ento-011613-162054. PubMed DOI
Cornell, H. V. , and Hawkins B. A.. 1995. “Survival Patterns and Mortality Sources of Herbivorous Insects: Some Demographic Trends.” American Naturalist 145, no. 4: 563–593. 10.1086/285756. DOI
Deka, B. , Baruah C., and Babu A.. 2021. “Entomopathogenic Microorganisms: Their Role in Insect Pest Management.” Egyptian Journal of Biological Pest Control 31, no. 1: 121. 10.1186/s41938-021-00466-7. DOI
Draganova, S. , Takov D., Pilarska D., and Georgiev G. T.. 2013. “Fungal Pathogens on Some Lepidopteran Forest Pests in Bulgaria.” Acta Zoologica Bulgarica 65, no. 2: 179–186.
Eilenberg, J. , Bresciani J., and Latgé J.‐P.. 1986. “Ultrastructural Studies of Primary Spore Formation and Discharge in the Genus Entomophthora.” Journal of Invertebrate Pathology 48, no. 3: 318–324. 10.1016/0022-2011(86)90060-1. DOI
Elkinton, J. S. , Bittner T. D., Pasquarella V. J., et al. 2019. “Relating Aerial Deposition of Entomophaga maimaiga Conidia (Zoopagomycota: Entomophthorales) to Mortality of Gypsy Moth (Lepidoptera: Erebidae) Larvae and Nearby Defoliation.” Environmental Entomology 48, no. 5: 1214–1222. 10.1093/ee/nvz091. PubMed DOI
Elliot, S. L. , Sabelis M. W., Janssen A., van der Geest L. P. S., Beerling E. A. M., and Fransen J.. 2000. “Can Plants Use Entomopathogens as Bodyguards?” Ecology Letters 3, no. 3: 228–235. 10.1046/j.1461-0248.2000.00137.x. DOI
Feeny, P. 1970. “Seasonal Changes in Oak Leaf Tannins and Nutrients as a Cause of Spring Feeding by Winter Moth Caterpillars.” Ecology 51, no. 4: 565–581. 10.2307/1934037. DOI
Fricke, U. , Steffan‐Dewenter I., Zhang J., et al. 2022. “Landscape Diversity and Local Temperature, but Not Climate, Affect Arthropod Predation Among Habitat Types.” PLoS One 17, no. 4: e0264881. 10.1371/journal.pone.0264881. PubMed DOI PMC
Fuentes‐Rodríguez, D. , Gervazoni P., López G., and Franceschini C.. 2020. “Relevance of Local Scale Factors in Winter Host‐Plant Selection by the Rice Pest Tibraca limbativentris (Hemiptera: Pentatomidae).” Journal of Applied Entomology 144, no. 4: 322–330. 10.1111/jen.12741. DOI
Gielen, R. , Meister H., Tammaru T., and Põldmaa K.. 2021. “Fungi Recorded on Folivorous Lepidoptera: High Diversity Despite Moderate Prevalence.” Journal of Fungi 7, no. 1: 1. 10.3390/jof7010025. PubMed DOI PMC
Gielen, R. , Põldmaa K., and Tammaru T.. 2022. “In Search of Ecological Determinants of Fungal Infections: A Semi‐Field Experiment With Folivorous Moths.” Ecology and Evolution 12, no. 5: e8926. 10.1002/ece3.8926. PubMed DOI PMC
Gielen, R. , Robledo G., Zapata A. I., Tammaru T., and Põldmaa K.. 2022. “Entomopathogenic Fungi Infecting Lepidopteran Larvae: A Case From Central Argentina.” Life 12, no. 7: 7. 10.3390/life12070974. PubMed DOI PMC
Gielen, R. , Teder T., Põldmaa K., and Tammaru T.. 2023. “Assemblage of Entomopathogenic Fungi Infesting Immature Stages of Noctuidae (Lepidoptera): High Diversity but Low Effect on Host Populations.” European Journal of Entomology 120, no. 1: 182–186. 10.14411/eje.2023.023. DOI
Haelewaters, D. , Gorczak M., Kaishian P., De Kesel A., and Blackwell M.. 2021. “Laboulbeniomycetes, Enigmatic Fungi With a Turbulent Taxonomic History.” In Encyclopedia of Mycology, edited by Zaragoza Ó. and Casadevall A., 263–283. Amsterdam: Elsevier. 10.1016/B978-0-12-819990-9.00049-4. DOI
Hajek, A. E. , and Eilenberg J.. 2018. Natural Enemies: An Introduction to Biological Control. Cambridge: Cambridge University Press.
Hassell, M. 2000. The Spatial and Temporal Dynamics of Host‐Parasitoid Interactions. Oxford: Oxford University Press.
Hawkins, B. A. 1994. Pattern and Process in Host‐Parasitoid Interactions. Cambridge: Cambridge University Press. 10.1017/CBO9780511721885. DOI
Hawkins, B. A. , Cornell H. V., and Hochberg M. E.. 1997. “Predators, Parasitoids, and Pathogens as Mortality Agents in Phytophagous Insect Populations.” Ecology 78, no. 7: 2145–2152. 10.1890/0012-9658(1997)078[2145:PPAPAM]2.0.CO;2. DOI
Hesketh, H. , Roy H. E., Eilenberg J., Pell J. K., and Hails R. S.. 2010. “Challenges in Modelling Complexity of Fungal Entomopathogens in Semi‐Natural Populations of Insects.” BioControl 55, no. 1: 55–73. 10.1007/s10526-009-9249-2. DOI
Hochberg, M. E. , and Ives A. R.. 2000. Parasitoid Population Biology. Princeton, NJ: Princeton University Press.
Hossain, L. , Rahman R., and Khan M. S.. 2017. “Alternatives of Pesticides.” In Pesticide Residue in Foods: Sources, Management, and Control, edited by Khan M. S. and Rahman M. S., 147–165. Berlin: Springer International Publishing. 10.1007/978-3-319-52683-6_9. DOI
Hyblerová, S. , Medo J., and Barta M.. 2021. “Diversity and Prevalence of Entomopathogenic Fungi (Ascomycota, Hypocreales) in Epidemic Populations of Bark Beetles (Coleoptera, Scolytinae) in Spruce Forests of the Tatra National Park in Slovakia.” Annals of Forest Research 64, no. 1: 1. 10.15287/afr.2020.2152. DOI
Il'inykh, A. V. 2007. “Epizootiology of Baculoviruses.” Biology Bulletin 34, no. 5: 434–441. 10.1134/S1062359007050020. PubMed DOI
Jaber, L. R. , and Ownley B. H.. 2018. “Can We Use Entomopathogenic Fungi as Endophytes for Dual Biological Control of Insect Pests and Plant Pathogens?” Biological Control 116: 36–45. 10.1016/j.biocontrol.2017.01.018. DOI
Jurat‐Fuentes, J. , and Jackson T.. 2012. “Chapter 8. Bacterial Entomopathogens.” In Insect Pathology, 265–349. San Diego: Academic Press. 10.1016/B978-0-12-384984-7.00008-7. DOI
Kamata, N. 2000. “Population Dynamics of the Beech Caterpillar, Syntypistis punctatella, and Biotic and Abiotic Factors.” Population Ecology 42, no. 3: 267–278. 10.1007/PL00012005. DOI
Kovač, M. , Linde A., Lacković N., Bollmann F., and Pernek M.. 2021. “Natural Infestation of Entomopathogenic Fungus Beauveria pseudobassiana on Overwintering Corythucha arcuata (Say) (Hemiptera: Tingidae) and Its Efficacy Under Laboratory Conditions.” Forest Ecology and Management 491: 119193. 10.1016/j.foreco.2021.119193. DOI
Lacey, L. A. , Grzywacz D., Shapiro‐Ilan D. I., Frutos R., Brownbridge M., and Goettel M. S.. 2015. “Insect Pathogens as Biological Control Agents: Back to the Future.” Journal of Invertebrate Pathology 132: 1–41. 10.1016/j.jip.2015.07.009. PubMed DOI
Manfrino, R. G. , Hatting J. L., Humber R., Salto C. E., and Lopez Lastra C. C.. 2014. “Natural Occurrence of Entomophthoroid Fungi (Entomophthoromycota) of Aphids (Hemiptera: Aphididae) on Cereal Crops in Argentina.” Annals of Applied Biology 164, no. 1: 151–158. 10.1111/aab.12089. DOI
Meyling, N. V. , and Hajek A. E.. 2010. “Principles From Community and Metapopulation Ecology: Application to Fungal Entomopathogens.” BioControl 55, no. 1: 39–54. 10.1007/s10526-009-9246-5. DOI
Mills, N. 2010. “Egg Parasitoids in Biological Control and Integrated Pest Management.” In Egg Parasitoids in Agroecosystems With Emphasis on Trichogramma, edited by Consoli F. L., Parra J. R. P., and Zucchi R. A., 389–411. Netherlands: Springer. 10.1007/978-1-4020-9110-0_15. DOI
Mora‐Aguilera, G. , Cortez‐Madrigal H., and Acevedo‐Sánchez G.. 2017. “Epidemiology of Entomopathogens: Basis for Rational Use of Microbial Control of Insects.” Southwestern Entomologist 42, no. 1: 153–169. 10.3958/059.042.0116. DOI
Naranjo‐Ortiz, M. A. , and Gabaldón T.. 2019. “Fungal Evolution: Diversity, Taxonomy and Phylogeny of the Fungi.” Biological Reviews 94, no. 6: 2101–2137. 10.1111/brv.12550. PubMed DOI PMC
Nielsen, C. , Eilenberg J., Harding S., Oddsdottir E., and Halldórsson G.. 2001. “Geographical Distribution and Host Range of Entomophthorales Infecting the Green Spruce Aphid Elatobium abietinum Walker in Iceland.” Journal of Invertebrate Pathology 78, no. 2: 72–80. 10.1006/jipa.2001.5045. PubMed DOI
Nixon, A. E. , and Roland J.. 2012. “Generalist Predation on Forest Tent Caterpillar Varies With Forest Stand Composition: An Experimental Study Across Multiple Life Stages.” Ecological Entomology 37, no. 1: 13–23. 10.1111/j.1365-2311.2011.01330.x. DOI
Parsa, S. , Ortiz V., and Vega F. E.. 2013. “Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control.” Journal of Visualized Experiments 74: 50360. 10.3791/50360. PubMed DOI PMC
Pell, J. K. , Hannam J. J., and Steinkraus D. C.. 2010. “Conservation Biological Control Using Fungal Entomopathogens.” BioControl 55, no. 1: 187–198. 10.1007/s10526-009-9245-6. DOI
Peterson, R. K. D. , Davis R. S., Higley L. G., and Fernandes O. A.. 2009. “Mortality Risk in Insects.” Environmental Entomology 38, no. 1: 2–10. 10.1603/022.038.0102. PubMed DOI
Poitevin, C. G. , Porsani M. V., Poltronieri A. S., Zawadneak M. A. C., and Pimentel I. C.. 2018. “Fungi Isolated From Insects in Strawberry Crops Act as Potential Biological Control Agents of Duponchelia fovealis (Lepidoptera: Crambidae).” Applied Entomology and Zoology 53, no. 3: 323–331. 10.1007/s13355-018-0561-0. DOI
Price, P. W. , Denno R. F., Eubanks M. D., Finke D. L., and Kaplan I.. 2011. Insect Ecology: Behavior, Populations and Communities. 1st ed. Cambridge: Cambridge University Press.
Rännbäck, L.‐M. , Cotes B., Anderson P., Rämert B., and Meyling N. V.. 2015. “Mortality Risk From Entomopathogenic Fungi Affects Oviposition Behavior in the Parasitoid Wasp Trybliographa Rapae.” Journal of Invertebrate Pathology 124: 78–86. 10.1016/j.jip.2014.11.003. PubMed DOI
Reilly, J. R. , Hajek A. E., Liebhold A. M., and Plymale R.. 2014. “Impact of Entomophaga Maimaiga (Entomophthorales: Entomophthoraceae) on Outbreak Gypsy Moth Populations (Lepidoptera: Erebidae): The Role of Weather.” Environmental Entomology 43, no. 3: 632–641. 10.1603/EN13194. PubMed DOI
Remmel, T. , Davison J., and Tammaru T.. 2011. “Quantifying Predation on Folivorous Insect Larvae: The Perspective of Life‐History Evolution.” Biological Journal of the Linnean Society 104: 1–18. 10.1111/j.1095-8312.2011.01721.x. DOI
Rhainds, M. , and Messing R. H.. 2005. “Spatial and Temporal Density Dependence in a Population of Melon Aphid, Aphis gossypii Glover (Homoptera: Aphididae), on Established and Sentinel Taro Plants.” Applied Entomology and Zoology 40, no. 2: 273–282. 10.1303/aez.2005.273. DOI
Roslin, T. , Hardwick B., Novotny V., et al. 2017. “Higher Predation Risk for Insect Prey at Low Latitudes and Elevations.” Science 356, no. 6339: 742–744. 10.1126/science.aaj1631. PubMed DOI
Roslin, T. , and Salminen J.. 2009. “A Tree in the Jaws of a Moth – Temporal Variation in Oak Leaf Quality and Leaf‐Chewer Performance.” Oikos 118, no. 8: 1212–1218. 10.1111/j.1600-0706.2009.17322.x. DOI
Roy, H. E. , and Cottrell T. E.. 2013. “Forgotten Natural Enemies: Interactions Between Coccinellids and Insect‐Parasitic Fungi.” European Journal of Entomology 105, no. 3: 391–398. 10.14411/eje.2008.049. DOI
Samson, R. A. , Evans H. C., and Latge J.‐P.. 2013. Atlas of Entomopathogenic Fungi. Berlin: Springer Science & Business Media.
Sang, A. , and Teder T.. 2011. “Dragonflies Cause Spatial and Temporal Heterogeneity in Habitat Quality for Butterflies.” Insect Conservation and Diversity 4, no. 4: 257–264. 10.1111/j.1752-4598.2011.00134.x. DOI
Seye, F. , Bawin T., Boukraa S., et al. 2014. “Effect of Entomopathogenic Aspergillus Strains Against the Pea Aphid, Acyrthosiphon pisum (Hemiptera: Aphididae).” Applied Entomology and Zoology 49, no. 3: 453–458. 10.1007/s13355-014-0273-z. DOI
Sharma, L. , and Marques G.. 2018. “Fusarium, an Entomopathogen—A Myth or Reality?” Pathogens 7, no. 4: 93. 10.3390/pathogens7040093. PubMed DOI PMC
Solter, L. , Becnel J., and Oi D.. 2012. “Microsporidian Entomopathogens.” In Insect Pathology, edited by Vega F. E. and Kaya H. K., 221–263. San Diego: Academic Press. 10.1016/B978-0-12-384984-7.00007-5. DOI
Speight, M. R. , Hunter M. D., and Watt A. D.. 2008. Ecology of Insects: Concepts and Applications. Hoboken, NJ: Wiley.
St. Leger, R. J. , and Wang J. B.. 2020. “Metarhizium: Jack of all Trades, Master of Many.” Open Biology 10, no. 12: 200307. 10.1098/rsob.200307. PubMed DOI PMC
Steinkraus, D. C. 2007. “Documentation of Naturally Occurring Pathogens and Their Impact in Agroecosystems.” In Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests, edited by Lacey L. A. and Kaya H. K., 267–281. Netherlands: Springer. 10.1007/978-1-4020-5933-9_12. DOI
Sung, G.‐H. , Hywel‐Jones N. L., Sung J.‐M., Luangsa‐ard J. J., Shrestha B., and Spatafora J. W.. 2007. “Phylogenetic Classification of Cordyceps and the Clavicipitaceous Fungi.” Studies in Mycology 57: 5–59. 10.3114/sim.2007.57.01. PubMed DOI PMC
Takov, D. , Pilarska D., Linde A., and Barta M.. 2021. “Infectious and Parasitic Diseases of Phytophagous Insect Pests in the Context of Extreme Environmental Conditions.” Central European Forestry Journal 67, no. 2: 72–84. 10.2478/forj-2020-0018. DOI
Teder, T. , and Tammaru T.. 2003. “Short‐Term Indirect Interactions Between Two Moth (Lepidoptera: Noctuidae) Species Mediated by Shared Parasitoids: The Benefit of Being Scarce.” European Journal of Entomology 100: 323–328.
Tedersoo, L. , Sánchez‐Ramírez S., Kõljalg U., et al. 2018. “High‐Level Classification of the Fungi and a Tool for Evolutionary Ecological Analyses.” Fungal Diversity 90, no. 1: 135–159. 10.1007/s13225-018-0401-0. DOI
Tikkanen, O. , and Lyytikäinen‐Saarenmaa P.. 2002. “Adaptation of a Generalist Moth, Operophtera brumata , to Variable Budburst Phenology of Host Plants.” Entomologia Experimentalis et Applicata 103, no. 2: 123–133. 10.1046/j.1570-7458.2002.00966.x. DOI
Townsend, R. J. , Glare T. R., and Willoughby B. E.. 1995. “The Fungi Beauveria Spp. Cause Epizootics in Grass Grub Populations in Waikato.” Proceedings of the New Zealand Plant Protection Conference 48: 237–241. 10.30843/nzpp.1995.48.11488. DOI
Vega, F. E. 2018. “The Use of Fungal Entomopathogens as Endophytes in Biological Control: A Review.” Mycologia 110, no. 1: 4–30. 10.1080/00275514.2017.1418578. PubMed DOI
Vega, F. E. , Goettel M. S., Blackwell M., et al. 2009. “Fungal Entomopathogens: New Insights on Their Ecology.” Fungal Ecology 2, no. 4: 149–159. 10.1016/j.funeco.2009.05.001. DOI
Vega, F. E. , and Kaya H. K.. 2012. Insect Pathology. 2nd ed. San Diego: Academic Press. https://www.elsevier.com/books/insect‐pathology/vega/978‐0‐12‐384984‐7.
Vega, F. E. , Meyling N. V., Luangsa‐ard J. J., and Blackwell M.. 2012. “Chapter 6—Fungal Entomopathogens.” In Insect Pathology, edited by Vega F. E. and Kaya H. K., 2nd ed., 171–220. San Diego: Academic Press. 10.1016/B978-0-12-384984-7.00006-3. DOI
Vidal, M. C. , and Murphy S. M.. 2018. “Bottom‐Up vs. Top‐Down Effects on Terrestrial Insect Herbivores: A Meta‐Analysis.” Ecology Letters 21, no. 1: 138–150. 10.1111/ele.12874. PubMed DOI
Wraight, S. P. , Inglis G. D., and Goettel M. S.. 2007. “Fungi.” In Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests, edited by Lacey L. A. and Kaya H. K., 223–248. Netherlands: Springer. 10.1007/978-1-4020-5933-9_10. DOI
Zvereva, E. L. , and Kozlov M. V.. 2021. “Latitudinal Gradient in the Intensity of Biotic Interactions in Terrestrial Ecosystems: Sources of Variation and Differences From the Diversity Gradient Revealed by Meta‐Analysis.” Ecology Letters 24, no. 11: 2506–2520. 10.1111/ele.13851. PubMed DOI