Responses of wild Piper species to drought and rehydration cycles considering stomatal closure as a marker of the alarm phase
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39651367
PubMed Central
PMC11558573
DOI
10.32615/ps.2023.030
PII: PS61363
Knihovny.cz E-zdroje
- Klíčová slova
- Piper aduncum, Piper tuberculatum, anatomical adaptations, compensatory development, water deficit,
- Publikační typ
- časopisecké články MeSH
Studies that simulate recurrent drought events with subsequent episodes of rehydration better reflect natural conditions and allow visualization of differential acclimatization responses resulting from memory and tolerance mechanisms. Piper aduncum and Piper tuberculatum were grown in a greenhouse and were subjected to three successive cycles of drought and subsequent rehydration. After suspending irrigation, gas exchanges were measured daily with IRGA. When stomatal conductances close to zero were obtained, the plants were rehydrated and kept irrigated. In P. tuberculatum, stomatal conductance was always higher after periods of rehydration compared to the period before the drought, while the transpiration rate was lower only during the drought. The damage to the photosynthetic apparatus was caused by the influence of the interception of the flow of electrons in the transport chain. We came to the conclusion that the dehydrated plants showed an alert signal, which triggered response mechanisms to prevent or deal with the water stress situation.
Zobrazit více v PubMed
Ahemd H.A., Al-Faraj A.A., Abdel-Ghany A.M. et al.: Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. – Sci. Hortic.-Amsterdam 201: 36-45, 2016. 10.1016/j.scienta.2016.01.030 DOI
Araújo M.S., Miguel J.R.: [The gender Piper L. (Piperaceae) in the Parque Natural Municipal da Taquara, Duque de Caxias, RJ, Brazil.] – Saúde Ambiente Rev. 6: 1-21, 2011. [In Portuguese] http://publicacoes.unigranrio.edu.br/index.php/sare/article/view/1564
Arnon D.I.: Cooper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. – Plant Physiol. 24: 1-15, 1949. 10.1104/pp.24.1.1 PubMed DOI PMC
Batista L.A., Guimarães R.J., Pereira F.J. et al.: [Leaf anatomy and water potential in the coffee cultivars tolerance to water stress.] – Rev. Ciênc. Agron. 41: 475-481, 2010. [In Portuguese] 10.1590/S1806-66902010000300022 DOI
Borowitzka M.A.: The ‘stress’ concept in microalgal biology – homeostasis, acclimation and adaptation. – J. Appl. Phycol. 30: 2815-2825, 2018. 10.1007/s10811-018-1399-0 DOI
Braga P.C.S., Martins J.P.R., Bonomo R., Falqueto R.A.: Physiological and anatomical responses of Crambe abyssinica to repeated exposure to water deficit. – Biotechnol. Agron. Soc. Environ. 26: 96-107, 2022. 10.25518/1780-4507.19694 DOI
Brunetti C., Gori A., Marino G. et al.: Dynamic changes in ABA content in water-stressed Populus nigra: effects on carbon fixation and soluble carbohydrates. – Ann. Bot.-London 124: 627-643, 2019. 10.1093/aob/mcz005 PubMed DOI PMC
Chekanov K., Vasilieva S., Solovchenko A., Lobakova E.: Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures. – Photosynthetica 56: 1268-1277, 2018. 10.1007/s11099-018-0841-5 DOI
Chithra S., Jasim B., Sachidanandan P. et al.: Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. – Phytomedicine 21: 534-540, 2014. 10.1016/j.phymed.2013.10.020 PubMed DOI
Dardengo J.F.E., Rossi A.A.B., Silva I.V. et al.: [Analysis of the influence of light on the anatomical aspects of leaves of Theobroma speciosum Willd ex Spreng. (Malvaceae).] – Ciênc. Florest. 27: 843-851, 2017. [In Portuguese] 10.5902/1980509828634 DOI
Dong S., Beckles D.M.: Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. – J. Plant Physiol. 234: 80-93, 2019. 10.1016/j.jplph.2019.01.007 PubMed DOI
Dousseau S., Alvarenga A.A.D., Alves E. et al.: Physiological, morphological and biochemical characteristics of the sexual propagation of Piper aduncum (Piperaceae). – Braz. J. Bot. 34: 297-305, 2011. 10.1590/S0100-84042011000300005 DOI
Durofil A., Radice M., Blanco-Salas J., Ruiz-Téllez T.: Piper aduncum essential oil: a promising insecticide, acaricide and antiparasitic. A review. – Parasite 28: 42, 2021. 10.1051/parasite/2021040 PubMed DOI PMC
Fang Y., Xiong L.: General mechanisms of drought response and their application in drought resistance improvement in plants. – Cell Mol. Life Sci. 72: 673-689, 2015. 10.1007/s00018-014-1767-0 PubMed DOI PMC
Ferreira D.F.: Sisvar: a computer statistical analysis system. – Ciênc. Agrotec. 35: 1039-1042, 2011. 10.1590/S1413-70542011000600001 DOI
Gao L., Caldwell C.D., Jiang Y.: Photosynthesis and growth of camelina and canola in response to water deficit and applied nitrogen. – Crop Sci. 58: 393-401, 2018. 10.2135/cropsci2017.07.0406 DOI
Gray S.B., Dermody O., Klein S.P. et al.: Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. – Nat. Plants 2: 16132, 2016. 10.1038/nplants.2016.132 PubMed DOI
Ilić Z.S., Fallik E.: Light quality manipulation improves vegetable quality at harvest and postharvest: A review. – Environ. Exp. Bot. 139: 79-90, 2017. 10.1016/j.envexpbot.2017.04.006 DOI
Jacinto A.C.P., Souza L.P.D., Nakamura A.T. et al.: Idioblasts formation and essential oil production in irrigated Piper aduncum. – Pesqui. Agropecu. Trop. 48: 447-452, 2018. 10.1590/1983-40632018v4853165 DOI
Jacques C., Salon C., Barnard R.L. et al.: Drought stress memory at the plant cycle level: a review. – Plants-Basel 10: 1873, 2021. 10.3390/plants10091873 PubMed DOI PMC
Jiang H.X., Chen L.S., Zheng J.G. et al.: Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. – Tree Physiol. 28: 1863-1871, 2008. 10.1093/treephys/28.12.1863 PubMed DOI
Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. – Plant Physiol. Biochem. 81: 16-25, 2014. 10.1016/j.plaphy.2014.03.029 PubMed DOI
Kalaji H.M., Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? – Environ. Exp. Bot. 152: 149-157, 2018a. 10.1016/j.envexpbot.2017.11.001 DOI
Kalaji M., Rastogi A., Živčák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. – Photosynthetica 56: 953-961, 2018b. 10.1007/s11099-018-0766-z DOI
Krahmer J., Ganpudi A., Abbas A.: Phytochrome, carbon sensing, metabolism, and plant growth plasticity. – Plant Physiol. 176: 1039-1048, 2018. 10.1104/pp.17.01437 PubMed DOI PMC
Kramer-Walter K.R., Bellingham P.J., Millar T.R. et al.: Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. – J. Ecol. 104: 1299-1310, 2016. 10.1111/1365-2745.12562 DOI
Lenhard N.R., Paiva Neto V.B., Scalon S.P.Q., Alvarenga A.A.: [Growth of Caesalpinia ferrea seedlings under different shading levels.] – Pesq. Agropec. Trop. 43: 178-186, 2013. [In Portuguese] 10.1590/S1983-40632013000200012 DOI
Liu Y., Dawson W., Prati D. et al.: Does greater specific leaf area plasticity help plants to maintain a high performance when shaded? – Ann. Bot.-London 118: 1329-1336, 2016. 10.1093/aob/mcw180 PubMed DOI PMC
Lotfi R., Kalaji H.M., Valizadeh G.R. et al.: Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. – Photosynthetica 56: 962-970, 2018. 10.1007/s11099-017-0745-9 DOI
Machado E.C., Schmidt P.T., Medina C.L., Ribeiro R.V.: [Photosynthetic responses of three citrus species to environmental factors.] – Pesq. Agropec. Bras. 40: 1161-1170, 2005. [In Portuguese] 10.1590/S0100-204X2005001200002 DOI
Maggio A., Bressan R.A., Zhao Y. et al.: It's hard to avoid avoidance: uncoupling the evolutionary connection between plant growth, productivity and stress “tolerance”. – Int. J. Mol. Sci. 19: 3671, 2018. 10.3390/ijms19113671 PubMed DOI PMC
Malone S.R., Mayeux H.S., Johnson H.B., Polley H.W.: Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. – Am. J. Bot. 80: 1413-1418, 1993. 10.1002/j.1537-2197.1993.tb15386.x DOI
Mathur S., Mehta P., Jajoo A.: Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). – Physiol. Mol. Biol. Pla. 19: 179-188, 2013. 10.1007/s12298-012-0151-5 PubMed DOI PMC
Menezes-Silva P.E., Sanglard L.M.V.P., Ávila R.T. et al.: Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. – J. Exp. Bot. 68: 4309-4322, 2017. 10.1093/jxb/erx211 PubMed DOI
Miller G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. – Anal. Chem. 31: 426-428, 1959. 10.1021/ac60147a030 DOI
Moncayo S., Rondón M.E., Araujo L. et al.: [Chemical composition and biological activities of the essential oils of Piper marginatum Jacq. and Piper tuberculatum Jacq. from Ecuador.] – Rev. Fac. Farm. 63: 14-24, 2021. [In Portuguese] 10.53766/REFA/2021.63.01.02 DOI
O'Brien M.J., Valtat A., Abiven S. et al.: The role of soluble sugars during drought in tropical tree seedlings with contrasting tolerances. – J. Plant Ecol. 13: 389-397, 2020. 10.1093/jpe/rtaa017 DOI
Oliveira D.A., Ferreira S.C., Carrera D.L.R. et al.: Characterization of Pseudomonas bacteria of Piper tuberculatum regarding the production of potentially bio-stimulating compounds for plant growth. – Acta Amaz. 51: 10-19, 2021b. 10.1590/1809-4392202002311 DOI
Oliveira O.S., Fagundes N.C.A., Veloso M.D.M.: Sapling survival and growth in a restoration project of a drained wetland forest in Southeastern Brazil. – Floresta Ambiente 28: e20200030, 2021a. 10.1590/2179-8087-FLORAM-2020-0030 DOI
Pacheco F.V., Alvarenga I.C.A., Bertolucci S.K.V. et al.: Water suppression indicates the prevalence of the secondary defense system in Piper aduncum. – Braz. J. Med. Plants 22: 38-50, 2022. http://www.sbpmed.org.br/admin/files/papers/file_UgUsUux8IxMz.pdf
Paunov M., Koleva L., Vassilev A. et al.: Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. – Int. J. Mol. Sci. 19: 787, 2018. 10.3390/ijms19030787 PubMed DOI PMC
Poorter H., Niklas K.J., Reich P.B. et al.: Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. – New Phytol. 193: 30-50, 2012. 10.1111/j.1469-8137.2011.03952.x PubMed DOI
Qayyum A., Al Ayoubi S., Sher A. et al.: Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. – Saudi J. Biol. Sci. 28: 5238-5249, 2021. 10.1016/j.sjbs.2021.05.040 PubMed DOI PMC
Rodriguez-Amaya D.B., Kimura M.: HarvestPlus Handbook for Carotenoid Analysis. Pp. 58. International Food Policy Research Institute, International Center for Tropical Agriculture, Washington: 2004. https://www.ifpri.org/publication/harvestplus-handbook-carotenoid-analysis
Salehi B., Zakaria Z.A., Gyawali R. et al.: Piper species: a comprehensive review on their phytochemistry, biological activities and applications. – Molecules 24: 1364, 2019. 10.3390/molecules24071364 PubMed DOI PMC
Sarnaglia Junior V.B., Bermudez G.M.M., Guimarães E.F.: [Piperaceae diversity in an Atlantic Forest remnant in the mountain region of Espírito Santo, Brazil.] – Biotemas 27: 49-57, 2014. [In Portuguese] 10.5007/2175-7925.2014v27n1p49 DOI
Scholander P.F., Hammel H.T., Hemingsen E.A., Bradstreet E.D.: Hydrostatic pressure and osmotic potentials in leaves of mangroves and some other plants. – PNAS 52: 119-125, 1964. 10.1073/pnas.52.1.119 PubMed DOI PMC
Segatto F.B., Bisognin D.A., Benedetti M. et al.: [A technique for the anatomical study of potato leaf epidermis.] – Ciênc. Rural 34: 1597-1601, 2004. [In Portuguese] 10.1590/S0103-84782004000500042 DOI
Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. – In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht: 1995. https://www.researchgate.net/publication/284763350_Measuring_Fast_Fluorescence_Transients_to_Address_Environmental_Questions_The_JIP-Test
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_12 DOI
Uarrota V.G., Stefen D.L.V., Leolato L.S. et al.: Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. – In: Gupta D., Palma J., Corpas F. (ed.): Antioxidants and Antioxidant Enzymes in Higher Plants. Pp. 207-232. Springer, Cham: 2018. 10.1007/978-3-319-75088-0_10 DOI
Vieira T.O., Lage-Pinto F., Ribeiro D.R. et al.: [Light stress in jequitibá-rosa seedlings (Cariniana legalis, Lecythidaceae): monitoring photosynthetic acclimatization capacity under two light intensities.] – Vértices 13: 129-142, 2011. [In Portuguese] 10.5935/1809-2667.20110029 DOI
Yemm E.W., Willis A.J.: The estimation of carbohydrates in plant extracts by anthrone. – Biochem. J. 57: 508-514, 1954. 10.1042/bj0570508 PubMed DOI PMC
Zanandrea I., Bacarin M.A., Braga E.J.B. et al.: Morphological and physiological photon flux influence under in vitro culture of apple shoots. – Braz. Arch. Biol. Technol. 52: 1091-1098, 2009. 10.1590/S1516-89132009000500005 DOI
Zivcak M., Brestic M., Balatova Z. et al.: Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. – Photosynth. Res. 117: 529-546, 2013. 10.1007/s11120-013-9885-3 PubMed DOI