Rebalancing the seed proteome following deletion of vicilin-related genes in pea (Pisum sativum L.)
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
BB/PO18386/1
UK Biotechnology and Biological Sciences Research Council
BB/W510695
UK Biotechnology and Biological Sciences Research Council
BB/J004561/1
UK Biotechnology and Biological Sciences Research Council
BBS/E/J/000PR9799
UK Biotechnology and Biological Sciences Research Council
TS/J002852/1
BBSRC, Department for Environment, Food, and Rural Affairs (Defra), and Technology Strategy Board/Innovate UK
IF0147
Pulse Crop Genetic Improvement Network
CH0111
Pulse Crop Genetic Improvement Network
LM2023055
ELIXIR-CZ Research Infrastructure Project
PubMed
39707743
PubMed Central
PMC12621101
DOI
10.1093/jxb/erae518
PII: 7929985
Knihovny.cz E-zdroje
- Klíčová slova
- Amino acid profile, genetic deletion, mutagenesis, pea genome sequence, pea seed, vicilin,
- MeSH
- delece genu MeSH
- hrách setý * genetika metabolismus MeSH
- hrachový protein * genetika metabolismus MeSH
- proteom * metabolismus genetika MeSH
- semena rostlinná * metabolismus genetika MeSH
- zásobní proteiny semen * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hrachový protein * MeSH
- proteom * MeSH
- vicilin protein, plant MeSH Prohlížeč
- zásobní proteiny semen * MeSH
Null mutations for genes encoding a major seed storage protein in pea, vicilin, were sought through screening a fast-neutron mutant population. Deletion mutations at four or five vicilin loci, where all vicilin genes within each locus were deleted, were combined to address the question of how removal or reduction of a major storage protein and potential allergen might impact the final concentration of protein per unit of mature seed weight, seed yield, and viability. While the concentration of seed protein was not reduced in mature seeds of mutant lines, indicative of a re-balancing of the proteome, notable differences were apparent in the metabolite, proteomic, and amino acid profiles of the seeds, as well as in some functional properties. Major effects of the deletions on the proteome were documented. The genomic regions which were deleted were defined by whole-genome sequencing of the parental line, JI2822, and its quintuple vicilin null derivative, providing a comprehensive description of each vicilin locus and its genic arrangement. An annotated reference genome has been generated for JI2822, which will serve as a very valuable resource for the research community and support further study of the associated deletion mutant population.
Department of Biochemistry and Metabolism John Innes Centre Norwich Research Park Norwich NR4 7UH UK
Department of Crop Genetics John Innes Centre Norwich Research Park Norwich NR4 7UH UK
IDna Genetics Ltd Centrum Norwich Research Park Norwich NR4 7UG UK
Zobrazit více v PubMed
Antonets KS, Belousov MV, Sulatskaya AI, et al. 2020. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biology 18, e3000564. PubMed PMC
AOAC. 1995. Official Method 994.12. Amino acids in feeds. Official Methods of Analysis of AOAC International. Vol. 1, 16th edn.
Barac M, Cabrilo S, Pesic M, Stanojevic S, Zilic S, Macej O, Ristic N. 2010. Profile and functional properties of seed proteins from six pea ( PubMed PMC
Bäumlein H, Braun H, Kakhovskaya IA, Shutov AD. 1995. Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. Journal of Molecular Evolution 41, 1070–1075. PubMed
Beach LR, Spencer D, Randall PJ, Higgins TJV. 1985. Transcriptional and post-transcriptional regulation of storage protein gene expression in sulfur-deficient pea seeds. Nucleic Acids Research 13, 999–1013. PubMed PMC
Bourgeois M, Francoise J, Savois V, Sommerer N, Labas V, Henry C, Burstin J. 2009. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 9, 254–271. PubMed
Braun H, Cziha A, Shutov AD, Bäumlein H. 1996. A vicilin-like seed protein of cycads: similarity to sucrose-binding proteins. Plant Molecular Biology 31, 35–44. PubMed
Campion B, Perrone D, Galasso I, Bollini R. 2009. Common bean (
Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular Biology and Evolution 38, 5825–5829. PubMed PMC
Cartelier K, Aimé D, Ly Vu J, Combes-Soia L, Labas V, Jean-Marie Prosperi J-M, Buitink J, Gallardo K, Le Signor C. 2021. Genetic determinants of seed protein plasticity in response to the environment in PubMed
Casey R, Domoney C. 1999. Pea globulins. In: Shewry PR, Casey R, eds. Seed proteins. Dordrecht, The Netherlands: Kluwer Academic Publishers, 171–208.
Casey R, Domoney C, Forster C, Hedley C, Hitchin E, Wang T. 1998. The effect of modifying carbohydrate metabolism on seed protein gene expression in peas. Journal of Plant Physiology 152, 636–640.
Castillo J, Genovés A, Franco L, Rodrigo MI. 2005. A multifunctional bicupin serves as precursor for a chromosomal protein of PubMed
Castillo J, Rodrigo MI, Márquez JA, Zúñiga A, Franco L. 2000. A pea nuclear protein that is induced by dehydration belongs to the vicilin superfamily. European Journal of Biochemistry 267, 2156–2165. PubMed
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved PubMed PMC
Chinoy C, Welham T, Turner L, Moreau C, Domoney C. 2011. The genetic control of seed quality traits: effects of allelic variation at the
Chung RP-T, Neumann GM, Polya GM. 1997. Purification and characterization of basic proteins with
Clemente A, Arques MC, Dalmais M, et al. 2015. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea. PLoS One 10, e0134634. PubMed PMC
Deutsch EW, Bandeira N, Perez-Riverol Y, et al. 2023. The ProteomeXchange Consortium at 10 years: 2023 update. Nucleic Acids Research 51, D1539–D1548. PubMed PMC
Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ. 1995. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genetics 9, 115–125. PubMed
Domoney C, Casey R. 1985. Measurement of gene number for seed storage proteins in PubMed PMC
Domoney C, Casey R. 1990. Another class of vicilin gene in PubMed
Domoney C, Knox M, Moreau C, et al. 2013. Exploiting a fast neutron mutant genetic resource in PubMed
Dudchenko O, Batra SS, Omer AD, et al. 2017. PubMed PMC
Dunwell JM, Khuri S, Gane PJ. 2000. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews 64, 153–179. PubMed PMC
Dunwell JM, Purvis A, Khuri S. 2004. Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7–17. PubMed
Ellis N, Hofer J, Sizer-Coverdale E, et al. 2023. Recombinant inbred lines derived from wide crosses in PubMed PMC
Ellis THN, Domoney C, Castleton J, Cleary W, Davies DR. 1986. Vicilin genes of
European Commission. 2009. Regulation (EC) No.152/2009. Annex III. Determination of amino acids (except tryptophan). Official Journal of European Union L54/1, 23–32.
Eyraud V, Karaki L, Rahioui I, Sivignon C, Da Silva P, Rahbé Y, Royer C, Gressent F. 2013. Expression and biological activity of the cystine knot bioinsecticide PA1b (pea albumin 1 subunit b). PLoS One 8, e81619. PubMed PMC
Freitas RL, Teixeira AR, Ferreira RB. 2007. Vicilin-type globulins follow distinct patterns of degradation in different species of germinating legume seeds. Food Chemistry 102, 323–329.
Gabriel L, Bruna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, Stanke M. 2024. BRAKER3: fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS and TSEBRA. Genome Research 34, 769–777. PubMed PMC
Gagete AP, Franco L, Rodrigo MI. 2011. The PubMed
Gao Y, Liu B, Wang Y, Xing Y. 2019. TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-chain. Bioinformatics 35, i200–i207. PubMed PMC
Gell G, Kovács K, Veres G, Korponay-Szabó IR, Juhász A. 2017. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Scientific Reports 7, 39876. PubMed PMC
Gomes VM, Mosqueda MI, Blanco-Labra A, Sales MP, Fernandes KVS, Cordeiro RA, Xavier-Filho J. 2002. Vicilin storage proteins from
Gravel A, Dubois-Laurin F, Turgeon SL, Doyen A. 2024. The role of the 7S/11S globulin ratio in the gelling properties of mixed β-lactoglobulin/pea proteins systems. Food Hydrocolloids 156, 110273.
Heim U, Wang Q, Kurz T, et al. 2001. Expression patterns and subcelular localization of a 52 kDa sucrose-binding protein homologue of PubMed
Hellens RP, Moreau C, Lin-Wang K, et al. 2010. Identification of Mendel’s white flower character. PLoS One 5, e13230. PubMed PMC
Higashi Y, Hirai MY, Fujiwara T, Naito S, Noji M, Saito K. 2006. Proteomic and transcriptomic analysis of PubMed
Huerta-Cepas J, Szklarczyk D, Heller D, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research 47, D309–D314. PubMed PMC
Hurkman WJ, Tanaka CK. 1986. Solubilisation of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiology 81, 802–806. PubMed PMC
Husband H, Ferreira S, Bu F, Feyzi S, Ismail BP. 2024. Pea protein globulins: does their relative ratio matter? Food Hydrocolloids 148, 109429.
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37, 907–915. PubMed PMC
Kreplak J, Madoui M-A, Cápal P, et al. 2019. A reference genome for pea provides insight into legume genome evolution. Nature Genetics 51, 1411–1422. PubMed
Krochko JE, Bewley D. 2000. Seed storage proteins in cultivars and subspecies of alfalfa (
Laetsch DR, Blaxter ML. 2017. BlobTools: interrogation of genome assemblies. F1000Research 6, 1287.
Lamont BB, He T, Milne LA, Cowling RM. 2024. Out of Africa: linked continents, overland migration and differential survival explain abundance of Proteaceae in Australia. Perspectives in Plant Ecology, Evolution and Systematics 62, 125778.
Lan T, Xiong W, Chen X, Mo B, Tang G. 2022. Plant cytoplasmic ribosomal proteins: an update on classification, nomenclature, evolution and resources. The Plant Journal 110, 292–318. PubMed
Le Signor C, Aimé D, Bordat A, et al. 2017. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytologist 214, 1597–1613. PubMed
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079. PubMed PMC
Liu N, Lyu X, Zhang X, et al. 2024. Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits. Nature Genetics 56, 1964–1974. PubMed
Livak KV, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 PubMed
Lopez-Torrejon G, Salcedo G, Martin-Esteban M, Diaz-Perales A, Pascual CY, Sanchez-Monge R. 2003. Len c 1, a major allergen and vicilin from lentil seeds: protein and cDNA cloning. The Journal of Allergy and Clinical Immunology 112, 1208–1215. PubMed
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution 38, 4647–4654. PubMed PMC
Marcus JP, Green JL, Goulter KC, Manners JM. 1999. A family of antimicrobial peptides is produced by processing of a 7S globulin protein in PubMed
Martinez-Seidel F, Beine-Golovchuk O, Hsieh Y-C, Kopka J. 2020. Systematic review of plant ribosome heterogeneity and specialization. Frontiers in Plant Science 11, 948. PubMed PMC
Miele A, Dekker J. 2009. Mapping cis- and trans-chromatin interaction networks using chromosome conformation capture (3C). Methods in Molecular Biology 464, 105–121. PubMed PMC
Miranda MRA, Uchôa AF, Ferreira SR, Ventury KE, Costa EP, Carmo PRL, Olga LTM, Fernandes KVS, Oliveira AEA. 2020. Chemical modifications of vicilins interfere with chitin-binding affinity and toxicity to PubMed
Moreau C, Warren FJ, Rayner T, Perez-Moral N, Lawson DM, Wang TL, Domoney C. 2022. An allelic series of starch-branching enzyme mutants in pea ( PubMed
Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10, 1. PubMed PMC
Nguyen T-P, Cueff G, Hegedus DD, Rajjou L, Bentsink L. 2015. A role for seed storage proteins in Arabidopsis seed longevity. Journal of Experimental Botany 66, 6399–6413. PubMed PMC
Novák P, Hoštáková N, Neumann P, Macas J. 2024. DANTE and DANTE_LTR: lineage-centric annotation pipelines for long terminal repeat retrotransposons in plant genomes. NAR Genomics and Bioinformatics 6, 113. PubMed PMC
Olías R, Rayner T, Clemente A, Domoney C. 2023. Combination of three null mutations affecting seed protein accumulation in pea ( PubMed
Pavlicevic MZ, Tomic MD, Djonlagic JA, Stanojevic SP, Vucelic Radovic BV. 2018. Evaluation of variation in protein composition on solubility, emulsifying and gelling properties of soybean genotypes synthesizing β subunit. Journal of the American Oil Chemists Society 95, 123–134.
Perez-Riverol Y, Bai J, Bandla C, et al. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Research 50, D543–D552. PubMed PMC
Perez-Riverol Y, Xu QW, Wang R, et al. 2016. PRIDE Inspector Toolsuite: moving towards a universal visualization tool for proteomics data standard formats and quality assessment of ProteomeXchange datasets. Molecular & Cellular Proteomics 15, 30517. PubMed PMC
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33, 290–295. PubMed PMC
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. PubMed PMC
Rayner T, Moreau C, Ambrose M, Isaac PG, Ellis N, Domoney C. 2017. Genetic variation controlling wrinkled seed phenotypes in PubMed PMC
Ribeiro AC, Monteiro SV, Carrapico BM, Ferreira RB. 2014. Are vicilins another major class of legume lectins? Molecules 19, 20350–20373. PubMed PMC
Robinson KA, St-Jacques AD, Bakestani ID, Beavington BAG, Loewen MC. 2022. Pea and lentil 7S globulin crystal structures with comparative immunoglobulin epitope mapping. Food Chemistry: Molecular Sciences 5, 100146. PubMed PMC
Rogers H, Dora M, Tsolakis N, Kumar M. 2024. Plant-based food supply chains: recognising market opportunities and industry challenges of pea protein. Applied Food Research 4, 100440.
Rose TL, Gomes VM, Da Cunha M, Fernandes KVS, Xavier-Filho J. 2003. Effect of sugars on the association between cowpea vicilin (7S storage proteins) and fungal cells. Biocell 27, 173–179. PubMed
Sales MP, Gerhardt IR, Grossi-de-Sa´ MF, Xavier-Filho J. 2000. Do legume storage proteins play a role in defending seeds against bruchids? Plant Physiology 124, 515–522. PubMed PMC
Sales MP, Pereira ST, Gomes VM, Fernandes KVS, Pimenta PPP, Grossi-de-Sá F, Xavier-Filho J. 1996. Localization of vicilins (7S) from cowpea (
Salgado P, Freire JB, Ferreira RB, Seabra M, Teixeira AR, Toullec R, Lallès JP. 2002. Legume proteins of the vicilin family are more immunogenic than those of the legumin family in weaned piglets. Food and Agricultural Immunology 14, 51–63.
Sanchez-Monge R, Lopez-Torrejon G, Pascual CY, Varela J, Martin-Esteban M, Salcedo G. 2004. Vicilin and convicilin are potential major allergens from pea. Clinical and Experimental Allergy 34, 1747–1753. PubMed
Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM. 2011. Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Physiology 156, 330–345. PubMed PMC
Seabra M, Carvalho S, Freire J, Ferreira R, Mourato M, Cunha L, Cabral F, Teixeira A, Aumaitre A. 2001.
Shewry PR, Casey R. 1999. Seed proteins. In: Shewry PR, Casey R, eds. Seed proteins. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1–10.
Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I. 2003. Vacuolar sorting receptor for seed storage proteins in PubMed PMC
Shutov AD, Bäumlein H, Blattner FR, Müntz K. 2003. Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. Journal of Experimental Botany 54, 1645–1654. PubMed
Shutov AD, Braun H, Chesnokov YV, Bäumlein H. 1998. A gene encoding a vicilin-like protein is specifically expressed in fern spores. European Journal of Biochemistry 252, 79–89. PubMed
Smit AFA, Hubley R, Green P. 2013–2015. RepeatMasker Open-4.0. http://www.repeatmasker.org
Tabe L, Hagan N, Higgins TJV. 2002. Plasticity of seed protein composition in response to nitrogen and sulfur availability. Current Opinion in Plant Biology 5, 212–217. PubMed
Tayeh N, Hofer JMI, Aubert G, et al. 2024. PubMed
Taylor M, Chapman R, Beyaert R, Hernandez-Sebastia C, Marsolais F. 2008. Seed storage protein deficiency improves sulfur amino acid content in common bean ( PubMed
Taylor SL, Marsh JT, Koppelman SJ, Kabourek JL, Johnson PE, Baumert JL. 2021. A perspective on pea allergy and pea allergens. Trends in Food Science &. Technology 116, 186–198.
Troya M, Kurawadwala H, Byrne B, Dowdy R, Weston Z. 2021. Plant-based meat: anticipating 2030 production requirements. GFI (Good Food Institute) Publication. https://gfi.org/wp-content/uploads/2021/11/Plant-based-meat_-anticipating-2030-production-requirements.pdf
van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES. 2010. Hi-C: a method to study the three-dimensional architecture of genomes. Journal of Visualized Experiments 6, 1869. PubMed PMC
van Zanten M, Carles A, Li Y, Soppe WJ. 2012. Control and consequences of chromatin compaction during seed maturation in PubMed PMC
Vigeolas H, Chinoy C, Zuther E, Blessington B, Geigenberger P, Domoney C. 2008. Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiology 146, 74–82. PubMed PMC
Wang Z, Luo Y, Li X, et al. 2008. Genetic control of floral zygomorphy in pea ( PubMed PMC
Xiong W, Lan T, Mo B. 2021. Extraribosomal functions of cytosolic ribosomal proteins in plants. Frontiers in Plant Science 12, 607157. PubMed PMC
Yamada K, Shimada T, Kondo M, Nishimura M, Hara-Nishimura I. 1999. Multiple functional proteins are produced by cleaving Asn–Gln bonds of a single precursor by vacuolar processing enzyme. Journal of Biological Chemistry 274, 2563–2570. PubMed
Yan H, Chen D, Wang Y, Sun Y, Zhao J, Sun M, Peng X. 2016. Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Scientific Reports 6, 31195. PubMed PMC
Yang T, Liu R, Luo Y, et al. 2022. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nature Genetics 54, 1553–1563. PubMed PMC
Young J, Johnston A, Brewin N. 1982. A search for peas (
Zhang Y, Park C, Bennett C, Thornton M, Kim D. 2021. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Research 31, 1290–1295. PubMed PMC
Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7, 203–214. PubMed
Zinsmeister J, Lalanne D, Terrasson E, et al. 2016. ABI5 is a regulator of seed maturation and longevity in legumes. The Plant Cell 28, 2735–2754. PubMed PMC