Comparative assessment of morphological, cytological, and photosynthetic characteristics of the induced octoploid and its tetraploid counterpart of Celosia argentea L
Language English Country England, Great Britain Media electronic
Document type Journal Article, Comparative Study
Grant support
2022B0004
Faculty of Economics and Management, Czech University of Life Sciences in Prague
2022B0004
Faculty of Economics and Management, Czech University of Life Sciences in Prague
2022B0004
Faculty of Economics and Management, Czech University of Life Sciences in Prague
VUKOZ-IP-00027073
Silva Tarouca Research Institute for Landscape and Ornamental Gardening
MZE-RO0423
Ministerstvo Zemědělství
PubMed
39709350
PubMed Central
PMC11662707
DOI
10.1186/s12870-024-05973-x
PII: 10.1186/s12870-024-05973-x
Knihovny.cz E-resources
- Keywords
- Chromosome doubling, Cockscomb, Crop improvement, Offspring stability, Oryzalin, Polyploid induction, Polyploidization,
- MeSH
- Celosia * genetics MeSH
- Chlorophyll metabolism MeSH
- Dinitrobenzenes pharmacology MeSH
- Phenotype MeSH
- Photosynthesis * MeSH
- Plant Leaves genetics growth & development physiology MeSH
- Polyploidy * MeSH
- Sulfanilamides MeSH
- Tetraploidy * MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Names of Substances
- Chlorophyll MeSH
- Dinitrobenzenes MeSH
- oryzalin MeSH Browser
- Sulfanilamides MeSH
BACKGROUND: Celosia argentea is a widely recognized plant for its ornamental qualities and therapeutic uses in traditional medicine. As demand for such multipurpose plants grows, enhancing its phenotypic and physiological traits could further expand its commercial potential. Polyploidization, particularly through chemical treatments like oryzalin, offers a method to induce genetic variation and potentially improve desirable traits in plants. RESULTS: Tetraploid (2n = 4×= 36) nodal segments of C. argentea were treated with oryzalin under in vitro conditions, resulting in successful induction of octoploidy (2n = 8×= 72). Flow cytometry and chromosome counting confirmed polyploidization, with the highest induction rate achieved using 40 µM oryzalin for 24 h. Comparative analyses between octoploid and tetraploid plants revealed significant differences in morphological traits, including increased stem and leaf thickness, larger leaf area, inflorescence characteristics and more compact growth in the octoploids. Additionally, octoploids exhibited enhanced chlorophyll content and altered photosynthetic characteristics, along with notable changes in stomatal size and density. Ploidy stability was maintained across generations, ensuring the heritability of the induced traits. CONCLUSIONS: In vitro polyploidization in C. argentea led to significant phenotypic and physiological improvements, demonstrating its potential for application in ornamental horticulture and plant breeding. This research contributes to the understanding of the impact of in vitro polyploidization on plant development, offering insights for the commercial cultivation and enhancement of C. argentea. CLINICAL TRIAL NUMBER: Not applicable.
See more in PubMed
Palada M, Crossman S. Evaluation of tropical leaf vegetables in the virgin islands. Perspect New Crops New Uses. 1999:388–93.
Ayodele J, Olajide O. Proximate and amino acid composition of Celosia argentea leaves. Nig J Bas App Sci. 2011;19.
Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep. 2014;31:35–60. PubMed
Morita H, Shimbo K, Shigemori H, Kobayashi J. Antimitotic activity of moroidin, a bicyclic peptide from the seeds of Celosia argentea. Bioorg Med Chem Lett. 2000;10:469–71. PubMed
Otten J, Hellwig J, Meyers L. Dietary reference intakes: the essential guide to nutrient requirements. National Academies; 2006.
Suzuki H, Morita H, Iwasaki S, Kobayashi J. New antimitotic bicyclic peptides, celogentins D–H, and J, from the seeds of Celosia argentea. Tetrahedron. 2003;59:5307–15. PubMed
Hase K, Kadota S, Basnet P, Takahashi T, Namba T. Protective effect of celosian, an acidic polysaccharide, on chemically and immunologically induced liver injuries. Biol Pharm Bull. 1996;19:567–72. PubMed
Hayakawa Y, Fujii H, Hase K, Ohnishi Y, Sakukawa R, Kadota S, et al. Anti-metastatic and immunomodulating properties of the water extract from Celosia argentea Seeds. Biol Pharm Bull. 1998;21:1154–9. PubMed
Molehin OR, Adefegha SA, Oboh G, Saliu JA, Athayde ML, Boligon AA. Comparative study on the phenolic content, antioxidant properties and HPLC fingerprinting of three varieties of Celosia species: vegetables, antioxidant, phenolics and aqueous extract. J Food Biochem. 2014;38:575–83.
Praveen S, Gali V, Singh S, Santosh G. Antidiarrhoeal activity of leaf extract of Celosia argentea in experimentally induced diarrhoea in rats. J Adv Pharm Technol Res. 2010;1:41–8. PubMed PMC
Sun Z-L, Wang Y, Guo M-L, Li Y-X. Two new hepaprotective saponins from Semen celosiae. Fitoterapia. 2010;81:375–80. PubMed
Varadharaj V, Muniyappan J. Phytochemical and phytotherapeutic properties of Celosia species- A review. Phyto. 2017;9.
Vetrichelvan T, Jegadeesan M, Devi BAU. Anti-diabetic activity of alcoholic extract of Celosia argentea L INN. Seeds in rats. Biol Pharm Bull. 2002;25:526–8. PubMed
Wu QB, Wang Y, Liang L, Jiang Q, Guo ML, Zhang JJ. Novel triterpenoid saponins from the seeds of Celosia argentea L. Nat Prod Res. 2013;27:1353–60. PubMed
Xue Q, Sun Z-L, Guo M-L, Wang Y, Zhang G, Wang X-K. Two new compounds from Semen celosiae and their protective effects against CCl4 -induced hepatotoxicity. Nat Prod Res. 2011;25:772–80. PubMed
Adegbaju OD, Otunola GA, Afolayan AJ. Proximate, mineral, vitamin and anti-nutrient content of Celosia argentea at three stages of maturity. S Afr J Bot. 2019;124:372–9.
Ghorpade P, Siddiqui A, Patil MJ, Rub RA. Pharmacognostic and phytochemical evaluation of Celosia argentea. Pharmacogn J. 2012;4:7–15.
Tang Y, Xin H, Guo M. Review on research of the phytochemistry and pharmacological activities of Celosia argentea. Rev Bras Farmacogn. 2016;26:787–96.
Miri SM. Artificial polyploidy in improvement of horticultural crops. J Plant Physiol Breed. 2020;10.
WANG L, LU Y, SU X, Zhang Q, ZHAO Z, CHEN J, et al. Research progress on polyploidy breeding of fruit trees. J Shanxi Agric Univ (Nat Sci Ed). 2022;42:14–24.
Sattler MC, Carvalho CR, Clarindo WR. The polyploidy and its key role in plant breeding. Planta. 2016;243:281–96. PubMed
Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60:561–88. PubMed
Beranová K, Bharati R, Žiarovská J, Bilčíková J, Hamouzová K, Klíma M, et al. Morphological, cytological, and molecular comparison between diploid and induced autotetraploids of Callisia fragrans (Lindl.) Woodson. Agronomy. 2022;12:2520.
Bharati R, Sen MK, Severová L, Svoboda R, Cusimamani EF. Polyploidization and genomic selection integration for grapevine breeding: a perspective. Front Plant Sci. 2023;14. PubMed PMC
Gantait S, Mukherjee E. Induced autopolyploidy—a promising approach for enhanced biosynthesis of plant secondary metabolites: an insight. J Genet Eng Biotechnol. 2021;19:4. PubMed PMC
Jin Y, Zhao Y, Ai S, Chen X, Liu X, Wang H et al. Induction of polyploid Malus prunifolia and analysis of its salt tolerance. Tree Physiol. 2022:tpac053. PubMed
Paterson AH. Polyploidy, evolutionary opportunity, and crop adaptation. In: Mauricio R, editor. Genetics of Adaptation. Berlin/Heidelberg: Springer-; 2005. pp. 191–6. PubMed
Šedivá J, Mrázková M, Zahumenická P, Cusimamani EF, Zahradník D. Identification of Phytophthora tolerance in the Anemone sylvestris tetraploid. Sci Hortic. 2019;256:108579.
Touchell DH, Palmer IE, Ranney TG. In vitro ploidy manipulation for crop improvement. Front Plant Sci. 2020;11:722. PubMed PMC
Liu P-L, Wan Q, Guo Y-P, Yang J, Rao G-Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-Copy Nuclear Gene and Chloroplast DNA sequences. PLoS ONE. 2012;7:e48970. PubMed PMC
Zhou S, Zhou S, Zhou G. Euploid endosperm of triploid × diploid/tetraploid crosses results in aneuploid embryo survival in Lilium. HortScience. 2011;46:558–62.
Misiukevičius E, Stanys V. Induction and analysis of polyploids in daylily (Hemerocallis L.) plants. Zemdirbyste-Agriculture. 2022;109:373–82.
Chen WH, Tang CY, Kao YL. Polyploidy and variety improvement of phalaenopsis orchids. Acta Hortic. 2010:133–8.
Tiwari P, Sharma A, Bose SK, Park K-I. Advances in orchid biology: biotechnological achievements, translational success, and commercial outcomes. Horticulturae. 2024;10:152.
Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult. 2011;104:359–73.
Germana MA. Use of irradiated pollen to induce parthenogenesis and haploid production in fruit crops. Plant mutation breeding and biotechnology. 1st edition. UK: CABI; 2012. pp. 411–21.
Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T. Induction of fertile amphidiploids by Artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. Japonicus Thunb. Breed Sci. 2006;56:303–10.
Parsons JL, Martin SL, James T, Golenia G, Boudko EA, Hepworth SR. Polyploidization for the genetic improvement of Cannabis sativa. Front Plant Sci. 2019;10:476. PubMed PMC
Zahumenická P, Fernández E, Šedivá J, Žiarovská J, Ros-Santaella JL, Martínez-Fernández D, et al. Morphological, physiological and genomic comparisons between diploids and induced tetraploids in Anemone sylvestris L. Plant Cell Tiss Organ Cult. 2018;132:317–27.
Farhadi N, Panahandeh J, Motallebi-Azar A, Mokhtarzadeh S. Production of autotetraploid plants by in vitro chromosome engineering in Allium hirtifolium. Hortic Plant J. 2022:S2468014122001510.
Fernández-Cusimamani E, Bharati R, Javůrková TA, Škvorová P, Paznocht L, Kotikova Z, et al. Artificial Polyploidization enhances morphological, physiological, and Biological characteristics in Melothria Scabra Naudin. Horticulturae. 2023;10:22.
Homaidan Shmeit Y, Fernandez E, Novy P, Kloucek P, Orosz M, Kokoska L. Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Sci Hortic. 2020;263:109095.
Sabooni N, Gharaghani A. Induced Polyploidy deeply influences reproductive life cycles, related phytochemical features, and phytohormonal activities in blackberry species. Front Plant Sci. 2022;13:938284. PubMed PMC
Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK. Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet. 2003;107:1195–200. PubMed
Miguel TP, Leonhardt KW. In vitro polyploid induction of orchids using oryzalin. Sci Hort. 2011:S0304423811003608.
Takamura T, Lim KB, Van Tuyl JM. Effect of a new compound on the mitotic polyploidization of lilium longiflorum and oriental hybrid lilies. Acta Hortic. 2002:37–42.
Vimala Y, Lavania UC, Singh M, Lavania S, Srivastava S, Basu S. Realization of lodging tolerance in the aromatic grass, Cymbopogon khasianus through ploidy intervention. Front Plant Sci. 2022;13:908659. PubMed PMC
Murashige T, Skoog F. A revised medium for Rapid Growth and Bio assays with Tobacco tissue cultures. Physiol Plant. 1962;153:473–97.
Bharati R, Gupta A, Novy P, Severová L, Šrédl K, Žiarovská J, et al. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. Front Plant Sci. 2023;14:1332428. PubMed PMC
Grant BW, Vatnick I. Environmental Correlates of Leaf Stomata Density. Exp Ecol. 2004;1.
Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, et al. Copper nanoparticles Induced Genotoxicty, oxidative stress, and changes in Superoxide dismutase (SOD) gene expression in Cucumber (Cucumis sativus) plants. Front Plant Sci. 2018;9:872. PubMed PMC
Banks JM. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiol. 2017;37:1128–36. PubMed
Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, et al. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. R Soc Open Sci. 2016;3:160592. PubMed PMC
Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol. 2011;104:236–57. PubMed
Mostafa GG, Alhamd MFA. Detection and evaluation the tetraploid plants of Celosia argentea induced by colchicines. Int J Plant Breed Genet. 2016;10:110–5.
Fakhrzad F, Jowkar A, Shekafandeh A, Kermani MJ, Moghadam A. Tetraploidy induction enhances morphological, physiological and biochemical characteristics of wallflower (Erysimum cheiri (L.) Crantz). Sci Hortic. 2023;308:111596.
Mendes-Bonato AB, Felismino MF, Kaneshima AMS, Pessim C, Calisto V, Pagliarini MS, et al. Abnormal meiosis in tetraploid genotypes of Brachiaria brizantha (Poaceae) induced by colchicine: its implications for breeding. J Appl Genet. 2009;50:83–7. PubMed
Rauf S, Ortiz R, Malinowski DP, Clarindo WR, Kainat W, Shehzad M, et al. Induced Polyploidy: A Tool for Forage species Improvement. Agriculture. 2021;11:210.
Grant WF. Speciation and basic chromosome number in the genus celosia. Can J Bot. 1961;39:45–50.
Grant WF. A cytological study of Celosia argentea, C. Argentea var. Cristata, and their hybrids. Bot Gaz. 1954;115:323–36.
Nath P, Ohri D, Pal M. Nuclear DNA content in Celosia (Amaranthaceae). Plant Syst Evol. 1992;182:253–7.
Eng W-H, Ho W-S. Polyploidization using colchicine in horticultural plants: a review. Sci Hortic. 2019;246:604–17.
Madani H, Escrich A, Hosseini B, Sanchez-Muñoz R, Khojasteh A, Palazon J. Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules. 2021;11:899. PubMed PMC
Zhang X, Chen K, Wang W, Liu G, Yang C, Jiang J. Differences in leaf morphology and related gene expression between diploid and tetraploid Birch (Betula pendula). Int J Mol Sci. 2022;23:12966. PubMed PMC
Chen R, Feng Z, Zhang X, Song Z, Cai D. A new way of rice breeding: polyploid rice breeding. Plants. 2021;10:422. PubMed PMC
Jing S, Kryger P, Markussen B, Boelt B. Pollination and plant reproductive success of two ploidy levels in red clover (Trifolium pratense L). Front Plant Sci. 2021;12:720069. PubMed PMC
Hoya A, Shibaike H, Morita T, Ito M. Germination characteristics of native Japanese dandelion autopolyploids and their putative diploid parent species. J Plant Res. 2007;120:139–47. PubMed
Bharati R, Fernández-Cusimamani E, Gupta A, Novy P, Moses O, Severová L, et al. Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind Crops Prod. 2023;198:116683.
Feng H, Wang M, Cong R, Dai S. Colchicine- and trifluralin-mediated polyploidization of Rosa multiflora Thunb. Var. Inermis and Rosa roxburghii f. Normalis. J Hortic Sci Biotechnol. 2017;92:279–87.
Mo L, Chen J, Chen F, Xu Q, Tong Z, Huang H, et al. Induction and characterization of polyploids from seeds of Rhododendron Fortunei Lindl. J Integr Agric. 2020;19:2016–26.
Kasmiyati S, Kristiani EBE, Herawati MM. Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. J Bio Bio Edu. 2020;12:90–6.
Chauhan J, Prathibha M, Singh P, Choyal P, Mishra UN, Saha D, et al. Plant photosynthesis under abiotic stresses: damages, adaptive, and signaling mechanisms. Plant Stress. 2023;10:100296.
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, et al. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Front Plant Sci. 2022;13:869423. PubMed PMC
Cao Q, Zhang X, Gao X, Wang L, Jia G. Effects of ploidy level on the cellular, photochemical and photosynthetic characteristics in Lilium FO hybrids. Plant Physiol Biochem. 2018;133:50–6. PubMed
Liao T, Cheng S, Zhu X, Min Y, Kang X. Effects of triploid status on growth, photosynthesis, and leaf area in Populus. Trees. 2016;30:1137–47.
Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170:489–504. PubMed
Kumar D, Singh H, Raj S, Soni V. Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochem Biophy Rep. 2020;24:100813. PubMed PMC
Ulum FB, Hadacek F, Hörandl E. Polyploidy improves photosynthesis regulation within the Ranunculus auricomus Complex (Ranunculaceae). Biology. 2021;10:811. PubMed PMC
Rub R, Pati M, Siddiqui A, Moghe A, Shaikh N. Characterization of anticancer principles of Celosia argentea (Amaranthaceae). Phcog Res. 2016;8:97. PubMed PMC
Da José G, Joaquim De Santana E, Reges De Sena A, Anderson De Morais B et al. Ferreira De Araújo MI, Perazzo De Souza Barbosa P,. Phytochemical analysis and antimicrobial and antioxidant activities of Celosia argentea leaves. Sci Plena. 2021;17.