Impacts of habitat fragmentation on the genetic diversity of the endangered Guatemalan fir (Abies guatemalensis Rehder)
Language English Country Netherlands Media electronic
Document type Journal Article
PubMed
39714521
DOI
10.1007/s10709-024-00225-0
PII: 10.1007/s10709-024-00225-0
Knihovny.cz E-resources
- Keywords
- Conservation, Gene flow, Genetic bottleneck, Guatemalan fir, Inbreeding, Overexploitation,
- MeSH
- Ecosystem * MeSH
- Genetic Variation * MeSH
- Abies * genetics MeSH
- Microsatellite Repeats * genetics MeSH
- Endangered Species * MeSH
- Genetics, Population MeSH
- Conservation of Natural Resources MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Guatemala MeSH
Abies guatemalensis Rehder, an endangered conifer endemic to Central American highlands, is ecologically vital in upper montane forests. It faces threats from habitat fragmentation, unsustainable logging, and illegal Christmas tree harvesting. While previous genetic studies on mature trees from eighteen populations showed high within-population diversity and limited among-population differentiation, the genetic impact of recent anthropogenic pressures on younger generations has yet to be discovered. Understanding these effects is crucial for developing effective conservation strategies for this vulnerable species. We sampled 170 young trees (< 15 years old) from seven populations across Guatemala. Seven microsatellite markers were used to analyse genetic diversity, population structure, and recent demographic history. Moderate levels of genetic diversity were observed within populations (mean Shannon diversity index = 4.97, mean Simpson's index = 0.51, mean allelic richness = 11.59, mean observed heterozygosity = 0.59). Although genetic structure broadly aligned with mountain corridors, substantial admixture patterns suggest historical connectivity across all populations. Most populations showed evidence of recent bottlenecks (p < 0.05) and inbreeding. The results suggest a potential decline in genetic diversity and increased population structuring (ΦST = 0.274, p < 0.01) over the past decades compared to the previous study on old trees. The observed genetic patterns indicate ongoing impacts of habitat fragmentation and anthropogenic pressures on A. guatemalensis. Conservation efforts should prioritise expanding effective population sizes and facilitating gene flow, particularly for isolated populations. While restoration efforts may be logistically easier within mountain ranges, genetic evidence suggests that increasing overall population connectivity could benefit this species. Management strategies should implement systematic seed collection protocols to maintain genetic diversity in future populations. These findings highlight the urgent need for conservation measures to preserve remaining genetic diversity and promote connectivity among A. guatemalensis populations.
See more in PubMed
Adamack A, Gruber B (2014a) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387. https://doi.org/10.1111/2041-210x.12158 DOI
Adamack AT, Gruber B (2014b) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387. https://doi.org/10.1111/2041-210X.12158 DOI
Aguilar R, Quesada M, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188. https://doi.org/10.1111/j.1365-294X.2008.03971.x PubMed DOI
Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala. Am J Bot 87:362–371. https://doi.org/10.2307/2656632 PubMed DOI
Andersen US, Córdova JPP, Sørensen M, Kollmann J (2006) Conservation and utilisation of Abies guatemalensis Rehder (Pinaceae)– An endangered endemic conifer in Central America. Biodivers Conserv 15:3131–3151. https://doi.org/10.1007/s10531-005-5405-x DOI
Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628. https://doi.org/10.1126/science.1121543 PubMed DOI
Bougeard S, Dray S (2018) Supervised multiblock analysis in R with the ade4 package. J Stat Softw 86:1–17. https://doi.org/10.18637/jss.v086.i01 DOI
Breed MF, Harrison PA, Blyth C et al (2019) The potential of genomics for restoring ecosystems and biodiversity. Nat Rev Genet 20:615–628. https://doi.org/10.1038/s41576-019-0152-0 PubMed DOI
Chung MY, Merilä J, Li J et al (2023) Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 11:1116814 DOI
Consejo Nacional de Áreas Protegidas -CONAP- (2020) Estrategia nacional para la conservación del pinabete Abies guatemalensis Rehder 2019–2028. Documento técnico No. 06-2020. https://conap.gob.gt/wp-content/uploads/2023/11/Estrategia-Nacional-para-la-Conservacion-del-Pinabete-2019-2028.pdf
R Core Team (2022) R: A language and environment for statistical computing
Delgado P, Piñero D, Chaos A et al (1999) High population differentiation and genetic variation in the endangered Mexican pine Pinus Rzedowskii (Pinaceae). Am J Bot 86:669–676 PubMed DOI
Delnevo N, Piotti A, Carbognani M et al (2021) Genetic and ecological consequences of recent habitat fragmentation in a narrow endemic plant species within an urban context. Biodivers Conserv 30:3457–3478. https://doi.org/10.1007/s10531-021-02256-x DOI
Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170. https://doi.org/10.1073/pnas.91.8.3166 PubMed DOI PMC
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem Bull 19:11–15
Duminil J, Fineschi S, Hampe A et al (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672. https://doi.org/10.1086/513490 PubMed DOI
Dunnington D (2023) ggspatial: Spatial Data Framework for ggplot2_. R package version 1.1.9. https://CRAN.R-project.org/package=ggspatial
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x PubMed DOI
François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784. https://doi.org/10.1111/j.1755-0998.2010.02868.x PubMed DOI
Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge DOI
Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, New York, United States of America DOI
Frankham R, Ballou JD, Ralls K et al (2017) Genetic management of fragmented animal and plant populations. Oxford University Press
Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929. https://doi.org/10.1111/2041-210X.12382 DOI
Frichot E, Mathieu F, Trouillon T et al (2014) Fast and efficient estimation of individual ancestry coefficients. Genetics 196:973–983. https://doi.org/10.1534/genetics.113.160572 PubMed DOI PMC
Gardner M (2013) Abies guatemalensis var. guatemalensis. The IUCN Red List of Threatened Species 2013. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T46186032A2795168.en . Accessed on 16 Apr 2024
Gillespie JH, John H, Gillespie (1998) Johns Hopkins University, Baltimore, Md
González AV, Gómez-Silva V, Ramírez MJ, Fontúrbel FE (2020) Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv Biol 34:711–720. https://doi.org/10.1111/cobi.13422 PubMed DOI
Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x DOI
Gruber B, Adamack AT (2015) landgenreport: a new r function to simplify landscape genetic analysis using resistance surface layers. Mol Ecol Resour 15:1172–1178. https://doi.org/10.1111/1755-0998.12381 PubMed DOI
Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x PubMed DOI
Habel JC, Zachos FE, Dapporto L et al (2015) Population genetics revisited– towards a multidisciplinary research field. Biol J Linn Soc 115:1–12. https://doi.org/10.1111/bij.12481 DOI
Heredia-Bobadilla RL, Gutiérrez-González G, Arzate-Fernández A-M, Franco-Maass S (2018) Genetic variability of Mountain Pine (Pinus hartwegii Lindl) in the protection of flora and fauna area Nevado de Toluca. In: El-Esawi MA (ed) Genetic Diversity in Plant Species - Characterization and Conservation. IntechOpen, Rijeka. Ch. 6
Hoban S, Bruford M, D’Urban Jackson J et al (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv 248:108654. https://doi.org/10.1016/j.biocon.2020.108654 DOI
Hollister JW (2023) elevatr: Access elevation data from various APIs. R package version 0.99.0. https://CRAN.R-project.org/package=elevatr/
Jardón-Barbolla L, Delgado-Valerio P, Geada-López G et al (2011) Phylogeography of Pinus subsection Australes in the Caribbean Basin. Ann Bot 107:229–241. https://doi.org/10.1093/aob/mcq232 PubMed DOI
Jombart T (2008) Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129 PubMed DOI
Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetecally structured populations. BMC Genet 1:94. https://doi.org/10.1186/1471-2156-11-94 DOI
Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci U S A 103:8096–8100. https://doi.org/10.1073/pnas.0510127103 PubMed DOI PMC
Kamvar ZN, Tabima JF, Gr̈unwald NJ (2014) Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281 PubMed DOI PMC
Keenan K, McGinnity P, Cross TF et al (2013) diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. https://doi.org/10.1111/2041-210X.12067 DOI
Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738 PubMed DOI PMC
Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci U S A 75:2868–2872. https://doi.org/10.1073/pnas.75.6.2868 PubMed DOI PMC
Kitada S, Nakamichi R, Kishino H (2021) Understanding population structure in an evolutionary context: population-specific FST and pairwise FST. G3 Genes|Genomes|Genetics. 11:jkab316. https://doi.org/10.1093/g3journal/jkab316
Kollmann J, Córdova JPP, Andersen RM (2008) Factors limiting regeneration of an endangered conifer in the highlands of Guatemala. J Nat Conserv 16:146–156. https://doi.org/10.1016/j.jnc.2008.06.002 DOI
Kormutak A, Demankova B, Gömöry D (2008) Spontaneous hybridization between Pinus sylvestris L. and P. mugo Turra in Slovakia. Silvae Genet 57:76–82. https://doi.org/10.1515/sg-2008-0012 DOI
Ledig FT, Hodgskiss PD, Jacob-Cervantes V (2002) Genetic diversity, mating system, and conservation of a Mexican subalpine relict, Picea mexicana Martínez. Conserv Genet 3:113–122. https://doi.org/10.1023/A:1015297621884 DOI
Leimu R, Vergeer P, Angeloni F, Ouborg NJ (2010) Habitat fragmentation, climate change, and inbreeding in plants. Ann N Y Acad Sci 1195:84–98. https://doi.org/10.1111/j.1749-6632.2010.05450.x PubMed DOI
Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239 PubMed DOI PMC
Li P, Niu L, Chang J et al (2024) Population genomic analysis reveals genetic divergence and adaptation in Brachymystax lenok. Front Genet 15. https://doi.org/10.3389/fgene.2024.1293477
Lucena-Perez M, Kleinman-Ruiz D, Marmesat E et al (2021) Bottleneck-associated changes in the genomic landscape of genetic diversity in wild lynx populations. Evol Appl 14:2664–2679. https://doi.org/10.1111/eva.13302 PubMed DOI PMC
Martínez-Arévalo JV (2016) Los bosques de Abies guatemalensis Rehder de San Marcos, Guatemala: una oportunidad para su restauración ecológica. Ciencia Tecnol y Salud 3:27–46 DOI
Massicotte P, South A (2023) _rnaturalearth: World map data from natural earth. R package version 1.0.1. https://CRAN.R-project.org/package=rnaturalearth
Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122. https://doi.org/10.1038/nrg2931 PubMed DOI
Neale D, Wheeler N (2019) The conifers: Genomes, variation and evolution. Springer Cham
Neaves LE, Eales J, Whitlock R et al (2015) The fitness consequences of inbreeding in natural populations and their implications for species conservation– a systematic map. Environ Evid 4:5. https://doi.org/10.1186/s13750-015-0031-x DOI
Nonić M, Šijačić-Nikolić M (2021) Genetic Diversity: Sources, Threats, and Conservation BT - Life on Land. In: Leal Filho W, Azul AM, Brandli L et al (eds) Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer International Publishing, Cham, pp 421–435
Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. https://doi.org/10.1146/annurev.ecolsys.37.091305.110215 DOI
Pinto AV, Hansson B, Patramanis I et al (2024) The impact of habitat loss and population fragmentation on genomic erosion. Conserv Genet 25:49–57. https://doi.org/10.1007/s10592-023-01548-9 DOI
Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. https://doi.org/10.1093/jhered/90.4.502 DOI
Porth I, El-Kassaby YA (2014) Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers. Diversity 6:283–295 DOI
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x PubMed DOI PMC
Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627. https://doi.org/10.1111/1755-0998.12512 PubMed DOI
Rasmussen KK, Andersen US, Frauenfelder N, Kollmann J (2008) Microsatellite markers for the endangered fir Abies guatemalensis (Pinaceae). Mol Ecol Resour 8:1307–1309. https://doi.org/10.1111/j.1755-0998.2007.02072.x PubMed DOI
Rasmussen KK, Strandby U, Kollmann J (2010) High genetic diversity within but limited differentiation among populations of the vulnerable Guatemalan fir. J Trop Sci 22:247–259
Ratnam W, Rajora OP, Finkeldey R et al (2014) Genetic effects of forest management practices: Global synthesis and perspectives. Ecol Manage 333:52–65. https://doi.org/10.1016/j.foreco.2014.06.008 DOI
Reed DH, Frankham R (2003) Correlation between Fitness and genetic diversity. Conserv Biol 17:230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x DOI
Robinson J, Kyriazis CC, Yuan SC, Lohmueller KE (2023) Deleterious variation in natural populations and implications for conservation genetics. Annu Rev Anim Biosci 11:93–114. https://doi.org/10.1146/annurev-animal-080522-093311 PubMed DOI
Romero-Sanchez ME, Perez-Miranda R, Gonzalez-Hernandez A et al (2018) Current and potential spatial distribution of six endangered pine species of Mexico: Towards a conservation strategy. Forests 9. https://doi.org/10.3390/f9120767
Rosales-Islas E, Octavio-Aguilar P (2023) Effect of forest management on the genetic diversity of Abies hidalgensis, a threatened species with restricted distribution. J Sci 69:193–204 DOI
Rosales-Islas E, Barrera-Tello D, Sánchez-González A et al (2023) Morphological and genetical characterization of Abies populations in Hidalgo, México: importance of the taxonomical identity to the harvesting. Bot Sci 101. https://doi.org/10.17129/botsci.3203
Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x PubMed DOI
Simental-Rodríguez SL, Quiñones-Pérez CZ, Moya D et al (2014) The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico. PLoS ONE 9:e111623. https://doi.org/10.1371/journal.pone.0111623 PubMed DOI PMC
Strandby U, Olsen CS (2008) The importance of understanding trade when designing effective conservation policy - The case of the vulnerable Abies guatemalensis Rehder. Biol Conserv 141:2959–2968. https://doi.org/10.1016/j.biocon.2008.08.023 DOI
Strandby U, Prado-Córdova JP, Sørensen M, Kollmann J (2006) Conservation and utilisation of Abies guatemalensis Rehder (Pinaceae) - An endangered endemic conifer in Central America. Biodivers Conserv 15:3131–3151. https://doi.org/10.1007/s10531-005-5405-x DOI
Szpiech ZA, Rosenberg NA (2011) On the size distribution of private microsatellite alleles. Theor Popul Biol 80:100–113. https://doi.org/10.1016/j.tpb.2011.03.006 PubMed DOI PMC
Tang S, Dai W, Li M et al (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30. https://doi.org/10.1007/s10709-007-9178-x PubMed DOI
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x DOI
Vieira MLC, Santini L, Diniz AL, de Munhoz C F (2016) Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol 39:312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027 PubMed DOI PMC
Whitlock MC (2000) Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evol (N Y) 54:1855–1861. https://doi.org/10.1111/j.0014-3820.2000.tb01232.x DOI
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-, New York DOI
Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562. https://doi.org/10.1007/s10592-005-9009-5 DOI
Young A, Boyle T, Brown T (1996) The population genetic consequences of habitatf ragmentation for plants. Trends Ecol Evol 11:413–418. https://doi.org/10.1016/0169-5347(96)10045-8 PubMed DOI
Yu W, Wu B, Wang X et al (2020) Scale-dependent effects of habitat fragmentation on the genetic diversity of Actinidia chinensis populations in China. Hortic Res 7:172. https://doi.org/10.1038/s41438-020-00401-1 PubMed DOI PMC