Association between cardiac autonomic regulation, visceral adipose tissue, cardiorespiratory fitness and ambient air pollution: 4HAIE study (Program-4)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39715184
PubMed Central
PMC11666063
DOI
10.1371/journal.pone.0315767
PII: PONE-D-24-39037
Knihovny.cz E-zdroje
- MeSH
- autonomní nervový systém fyziologie MeSH
- dospělí MeSH
- kardiorespirační zdatnost * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- nitrobřišní tuk * MeSH
- průřezové studie MeSH
- senioři MeSH
- srdce fyziologie MeSH
- srdeční frekvence * fyziologie MeSH
- znečištění ovzduší * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: The main objective of the present cross-sectional cohort study was to determine whether there is an association between cardiac autonomic regulation, as expressed through heart rate variability (HRV), and cardiorespiratory fitness (CRF), visceral adipose tissue (VAT), and over the long-term living in areas with low or high air pollution. METHODS: The study sample included 1036 (487 females) healthy runners (603) and inactive participants (age 18-65 years) who had lived for at least 5 years in an area with high (Moravian-Silesian; MS) or low (South Bohemian; SB) air pollution in the Czech Republic. A multivariable regression analysis was used to evaluate the associations between multiple independent variables (CRF (peak oxygen consumption), VAT, sex, socioeconomic status (education level), and region (MS region vs. SB region) with dependent variable HRV. The root mean square of successive RR interval differences (rMSSD) was employed for the evaluation of HRV. RESULTS: The multivariable linear regression model revealed that cardiac autonomic regulation (rMSSD) was significantly associated with CRF level (p < .001) and age (p < .001). There were no associations between rMSSD and region (high or low air-pollution), sex, education level or VAT (p > 0.050). CONCLUSIONS: We showed that living in an area with low or high air pollution is not associated with cardiac autonomic modulation in healthy runners and inactive individuals. CRF and age significantly directly and inversely, respectively, associated with HRV. There were no other significant associations.
Zobrazit více v PubMed
Steinacker JM, Van Mechelen W, Bloch W, Börjesson M, Casasco M, Wolfarth B, et al.. Global Alliance for the Promotion of Physical Activity: the Hamburg Declaration. BMJ Open Diabetes Res Care. 2023;9(3):1–9. doi: 10.1136/bmjsem-2023-001626 PubMed DOI PMC
Young HA, Benton D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav Pharmacol. 2018;29:140–51. doi: 10.1097/FBP.0000000000000383 PubMed DOI PMC
Fang SC, Wu YL, Tsai PS. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol Res Nurs. 2020;22(1):45–56. doi: 10.1177/1099800419877442 PubMed DOI
Jarczok MN, Weimer K, Braun C, Williams DWP, Thayer JF, Gündel HO, et al.. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. Neurosci Biobehav Rev. 2022;143(October):104907. doi: 10.1016/j.neubiorev.2022.104907 PubMed DOI
Gidron Y, Deschepper R, De Couck M, Thayer JF, Velkeniers B. The vagus nerve can predict and possibly modulate non-communicable chronic diseases: Introducing a neuroimmunological paradigm to public health. J Clin Med. 2018;7(10). doi: 10.3390/jcm7100371 PubMed DOI PMC
Liu KY, Elliott T, Knowles M, Howard R. Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: A systematic review and meta-analysis. Ageing Res Rev [Internet]. 2022;73(May 2021):101539. Available from: doi: 10.1016/j.arr.2021.101539 PubMed DOI PMC
Wulsin LR, Horn PS, Perry JL, Massaro JM, D’Agostino RB. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab. 2015;100(6):2443–8. doi: 10.1210/jc.2015-1748 PubMed DOI
Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al.. Cardiorespiratory Fitness as a Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men and Women A Meta-analysis Satoru. J Am Med Assoc. 2009;301(19):2024–35. doi: 10.1001/jama.2009.681 PubMed DOI
Han M, Qie R, Shi X, Yang Y, Lu J, Hu F, et al.. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: dose-response meta-analysis of cohort studies. Br J Sports Med. 2022;56(13):733–9. doi: 10.1136/bjsports-2021-104876 PubMed DOI
Steell L, Ho FK, Sillars A, Petermann-Rocha F, Li H, Lyall DM, et al.. Dose-response associations of cardiorespiratory fitness with all-cause mortality and incidence and mortality of cancer and cardiovascular and respiratory diseases: The UK Biobank cohort study. Br J Sports Med. 2019;53(21):1371–8. doi: 10.1136/bjsports-2018-099093 PubMed DOI
Windham BG, Fumagalli S, Ble A, Sollers JJ, Thayer JF, Najjar SS, et al.. The Relationship between Heart Rate Variability and Adiposity Differs for Central and Overall Adiposity. J Obes. 2012;2012:149516. doi: 10.1155/2012/149516 PubMed DOI PMC
Neeland IJ, Ross R, Després JP, Matsuzawa Y, Yamashita S, Shai I, et al.. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7(9):715–25. doi: 10.1016/S2213-8587(19)30084-1 PubMed DOI
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al.. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet [Internet]. 2017;389(10082):1907–18. doi: 10.1016/S0140-6736(17)30505-6 PubMed DOI PMC
de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med. 2022;291(6):779–800. doi: 10.1111/joim.13467 PubMed DOI PMC
Hůnová I. Ambient air quality in the Czech Republic. Atmosphere (Basel). 2021;12(6):770. doi: 10.3390/atmos12060770 DOI
Machaczka O, Jiřík V, Janulková T, Michalík J, Siemiatkowski G, Osrodka L, et al.. Comparisons of lifetime exposures between differently polluted areas and years of life lost due to all-cause mortality attributable to air pollution. Environ Sci Eur. 2023;35(1). doi: 10.1186/s12302-023-00778-5 DOI
Cipryan L, Kutac P, Dostal T, Zimmermann M, Krajcigr M, Jandackova V, et al.. Regular running in an air-polluted environment: Physiological and anthropometric protocol for a prospective cohort study (Healthy Aging in Industrial Environment Study ‐ Program 4). BMJ Open. 2020;10(12):1–8. doi: 10.1136/bmjopen-2020-040529 PubMed DOI PMC
Jandačka D, Uchytil J, Zahradnik D, Farana R, Vilimek D, Skypala J, et al.. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical andMusculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment ‐ Program 4). Int J Environ Res Public Health. 2020;17. doi: 10.3390/ijerph17239142 PubMed DOI PMC
Elavsky S, Jandačková V, Knapová L, Vašendová V, Sebera M, Kaštovská B, et al.. Physical activity in an air-polluted environment: behavioral, psychological and neuroimaging protocol for a prospective cohort study (Healthy Aging in Industrial Environment study–Program 4). BMC Public Health. 2021;21(1):1–14. doi: 10.1186/s12889-021-10166-4 PubMed DOI PMC
Michalik J, Machaczka O, Jirik V, Heryan T, Janout V. Air Pollutants over Industrial and Non-Industrial Areas: Historical Concentration Estimates. Atmosphere (Basel). 2022;13(3):1–15. doi: 10.3390/atmos13030455 DOI
CHMU. Air pollution in the Czech Republic in 2021 [Internet]. 2021. Available from: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/21groc/gr21cz/Obsah_CZ.html
Peabody JE, Ryznar R, Ziesmann MT, Gillman L. A Systematic Review of Heart Rate Variability as a Measure of Stress in Medical Professionals. Cureus. 2023;15(1):1–11. doi: 10.7759/cureus.34345 PubMed DOI PMC
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use Task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Eur Heart J. 1996;17:354–81. PubMed
Birnbaumer P, Dostal T, Cipryan L, Hofmann P. Pattern of the heart rate performance curve in maximal graded treadmill running from 1100 healthy 18–65 Years old men and women: the 4HAIE study. Front Physiol. 2023. May 30;14(May):1–10. doi: 10.3389/fphys.2023.1178913 PubMed DOI PMC
Thomas S, Reading J, Shephard RJ. Revision of the physical activity readiness questionnaire (PAR-Q). Can J Sport Sci J Can des Sci du Sport. 1992;17(4):338–45. PubMed
Fluckiger L, Boivin JM, Quilliot D, Jeandel C, Zannad F. Differential effects of aging on heart rate variability and blood pressure variability. Journals Gerontol ‐ Ser A Biol Sci Med Sci. 1999;54(5):219–24. doi: 10.1093/gerona/54.5.b219 PubMed DOI
Antelmi I, De Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol. 2004;93(3):381–5. doi: 10.1016/j.amjcard.2003.09.065 PubMed DOI
Jandackova VK, Scholes S, Britton A, Steptoe A. Are changes in heart rate variability in middle-aged and older people normative or caused by pathological conditions? Findings from a large population-based longitudinal cohort study. J Am Heart Assoc. 2016;5(2):1–13. doi: 10.1161/JAHA.115.002365 PubMed DOI PMC
Medeiros AR, Leicht AS, Michael S, Boullosa D. Weekly vagal modulations and their associations with physical fitness and physical activity. Eur J Sport Sci. 2021;21(9):1326–36. doi: 10.1080/17461391.2020.1838619 PubMed DOI
Kiviniemi AM, Perkiömäki N, Auvinen J, Niemelä M, Tammelin T, Puukka K, et al.. Fitness, Fatness, Physical Activity, and Autonomic Function in Midlife. Med Sci Sports Exerc. 2017;49(12):2459–68. doi: 10.1249/MSS.0000000000001387 PubMed DOI
Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1(3):1603–48. doi: 10.1002/cphy.c100059 PubMed DOI PMC
Eriksen L, Grønbæk M, Helge JW, Tolstrup JS. Cardiorespiratory fitness in 16 025 adults aged 18–91 years and associations with physical activity and sitting time. Scand J Med Sci Sport. 2016;26(12):1435–43. doi: 10.1111/sms.12608 PubMed DOI
Wang CY, Haskell WL, Farrell SW, Lamonte MJ, Blair SN, Curtin LR, et al.. Cardiorespiratory fitness levels among us adults 20–49 years of age: Findings from the 1999–2004 national health and nutrition examination survey. Am J Epidemiol. 2010;171(4):426–35. doi: 10.1093/aje/kwp412 PubMed DOI
Tornberg J, Ikäheimo TM, Kiviniemi A, Pyky R, Hautala A, Mäntysaari M, et al.. Physical activity is associated with cardiac autonomic function in adolescent men. PLoS One. 2019;14(9):1–10. doi: 10.1371/journal.pone.0222121 PubMed DOI PMC
Kim CS, Kim MK, Jung HY, Kim MJ. Effects of exercise training intensity on cardiac autonomic regulation in habitual smokers. Ann Noninvasive Electrocardiol. 2017;22(5):1–9. doi: 10.1111/anec.12434 PubMed DOI PMC
Liao D, Duan Y, Whitsel EA, Zheng ZJ, Heiss G, Chinchilli VM, et al.. Association of higher levels of ambient criteria pollutants with impaired cardiac autonomic control: A population-based study. Am J Epidemiol. 2004;159(8):768–77. doi: 10.1093/aje/kwh109 PubMed DOI
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, et al.. Exposures to low-levels of fine particulate matter are associated with acute changes in heart rate variability, cardiac repolarization, and circulating blood lipids in coronary artery disease patients. Environ Res. 2022;214(P1):113769. doi: 10.1016/j.envres.2022.113768 PubMed DOI PMC
Cole-Hunter T, Weichenthal S, Kubesch N, Foraster M, Carrasco-Turigas G, Bouso L, et al.. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: A cross-over study. J Expo Sci Environ Epidemiol. 2016;26(2):133–40. doi: 10.1038/jes.2015.66 PubMed DOI
Mordukhovich I, Coull B, Kloog I, Koutrakis P, Vokonas P, Schwartz J. Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an elderly cohort: the Normative Aging Study. Environ Heal A Glob Access Sci Source. 2015;14(1):1–10. doi: 10.1186/s12940-015-0074-z PubMed DOI PMC
Juneja Gandhi T., Garg P. R., Kurian K., Bjurgert J., Sahariah S. A., Mehra S, et al.. Outdoor Physical Activity in an Air Polluted Environment and Its Effect on the Cardiovascular System-A Systematic Review. International journal of environmental research and public health. 2022; 19(17), 10547. doi: 10.3390/ijerph191710547 PubMed DOI PMC
Andersen Z. J., de Nazelle A., Mendez M. A., Garcia-Aymerich J., Hertel O., Tjønneland A, et al.. A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: the Danish Diet, Cancer, and Health Cohort. Environmental health perspectives. 2015; 123(6), 557–563. doi: 10.1289/ehp.1408698 PubMed DOI PMC
Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The Role of the Autonomic Nervous System in the Pathophysiology of Obesity. 2017;8(September):1–16. doi: 10.3389/fphys.2017.00665 PubMed DOI PMC