Revealing connectivity patterns of deep brain stimulation efficacy in Parkinson's disease
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GAČR 21-25953S
Grantová Agentura České Republiky
GAČR 21-25953S
Grantová Agentura České Republiky
GAČR 21-25953S
Grantová Agentura České Republiky
GAČR 21-25953S
Grantová Agentura České Republiky
GAČR 21-25953S
Grantová Agentura České Republiky
NU21-04-00445
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00445
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00445
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00445
Agentura Pro Zdravotnický Výzkum České Republiky
ID Project No. LX22NPO5107
National Institute for Neurological Research-Programme EXCELES
ID Project No. LX22NPO5107
National Institute for Neurological Research-Programme EXCELES
ID Project No. LX22NPO5107
National Institute for Neurological Research-Programme EXCELES
NUDZ, 00023752
institutional program of support MH CZ - DRO
PubMed
39738347
PubMed Central
PMC11686061
DOI
10.1038/s41598-024-80630-9
PII: 10.1038/s41598-024-80630-9
Knihovny.cz E-resources
- Keywords
- Connectivity patterns, Deep brain stimulation, EEG, Functional connectivity, Parkinson’s disease, Subthalamic nucleus,
- MeSH
- Electroencephalography methods MeSH
- Deep Brain Stimulation * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Brain physiopathology diagnostic imaging MeSH
- Subthalamic Nucleus * physiopathology MeSH
- Parkinson Disease * therapy physiopathology MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS. Whole brain neural correlates of cognitive performance were also detected in the high gamma (50-100 Hz) band. A whole brain multifrequency connectivity profile was found to classify optimal and suboptimal responders to DBS with a positive predictive value of 0.77, negative predictive value of 0.55, specificity of 0.73, and sensitivity of 0.60. Specific connectivity patterns related to PD, motor symptoms improvement after DBS, and therapy responsiveness predictive connectivity profiles were uncovered.
See more in PubMed
for Parkinson’s Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the Globus Pallidus in Parkinson’s disease. N. Engl. J. Med.345, 956–963 (2001). PubMed
Rodriguez-Oroz, M. C. et al. Bilateral deep brain stimulation in Parkinson’s disease: A multicentre study with 4 years follow-up. Brain128, 2240–2249 (2005). PubMed
Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med.355, 896–908 (2006). PubMed
Moro, E. et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov. Disord.25, 578–586 (2010). PubMed
Lozano, A. M. et al. Deep brain stimulation: Current challenges and future directions. Nat. Rev. Neurol.15, 148–160 (2019). PubMed PMC
Temel, Y. et al. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: A systematic review. Parkinsonism Relat. Disord12, 265–272 (2006). PubMed
Voon, V., Kubu, C., Krack, P., Houeto, J. L. & Tröster A. I. Deep brain stimulation: Neuropsychological and neuropsychiatric issues. Mov. Disord21, S305–S327 (2006). PubMed
Witt, K. et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: A randomised, multicentre study. Lancet Neurol.7, 605–614 (2008). PubMed
Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol.74, 449–457 (2013). PubMed PMC
Habets, J. G. V. et al. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov. Disord.33, 1834–1843 (2018). PubMed PMC
Tinkhauser, G. et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain140, 1053–1067 (2017). PubMed PMC
Alonso-Frech, F. et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain129, 1748–1757 (2006). PubMed
Chen, C. C. et al. Complexity of subthalamic 13–35 hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp. Neurol.224, 234–240 (2010). PubMed
Oswal, A. et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain139, 1482–1496 (2016). PubMed PMC
Steiner, L. A. et al. Subthalamic beta dynamics mirror parkinsonian bradykinesia months after neurostimulator implantation. Mov. Disord.32, 1183–1190 (2017). PubMed PMC
Kühn, A. A., Kupsch, A., Schneider, G. H. & Brown, P. Reduction in subthalamic 8–35 hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci.23, 1956–1960 (2006). PubMed
van Wijk, B. C. M. et al. Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease. Clin. Neurophysiol.127, 2010–2019 (2016). PubMed PMC
Bočková, M. et al. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis.10, 40 (2024). PubMed PMC
López-Azcárate, J. et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J. Neurosci.30, 6667–6677 (2010). PubMed PMC
Litvak, V., Florin, E., Tamás, G., Groppa, S. & Muthuraman, M. EEG and MEG primers for tracking DBS network effects. Neuroimage224, 117447 (2021). PubMed
Bočková, M. & Rektor, I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin. Neurophysiol.130, 239–247 (2019). PubMed
Markser, A. et al. Deep brain stimulation and cognitive decline in Parkinson’s disease: The predictive value of electroencephalography. J. Neurol.262, 2275–2284 (2015). PubMed
Yakufujiang, M. et al. Predictive potential of preoperative electroencephalogram for neuropsychological change following subthalamic nucleus deep brain stimulation in Parkinson’s disease. Acta Neurochir. (Wien)161, 2049–2058 (2019). PubMed
Onofrj, M., Espay, A. J., Bonanni, L., Delli Pizzi, S. & Sensi, S. L. Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov. Disord.34, 1100–1111 (2019). PubMed PMC
Geraedts, V. J. et al. Machine learning for automated EEG-based biomarkers of cognitive impairment during deep brain stimulation screening in patients with Parkinson’s Disease. Clin. Neurophysiol.132, 1041–1048 (2021). PubMed
Bočková, M. et al. Cortical network organization reflects clinical response to subthalamic nucleus deep brain stimulation in Parkinson’s disease. Hum. Brain Mapp.42, 5626–5635 (2021). PubMed PMC
Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol.118, 2128–2148 (2007). PubMed PMC
Bočková, M. et al. Oscillatory changes in cognitive networks activated during a three-stimulus visual paradigm: An intracerebral study. Clin. Neurophysiol.124, 283–291 (2013). PubMed
Fournier, L. R. et al. Which task will we choose first? Precrastination and cognitive load in task ordering. Atten. Percept. Psychophys81, 489–503 (2019). PubMed
Horn, A. & Kühn, A. A. Lead-DBS: A toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage107, 127–135 (2015). PubMed
Ewert, S. et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage170, 271–282 (2018). PubMed
Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods134, 9–21 (2004). PubMed
Coito, A., Michel, C. M., Vulliemoz, S. & Plomp, G. Directed functional connections underlying spontaneous brain activity. Hum. Brain Mapp.40, 879–888 (2019). PubMed PMC
Zaldivar, D., Goense, J., Lowe, S. C., Logothetis, N. K. & Panzeri, S. Dopamine is signaled by mid-frequency oscillations and boosts output layers visual information in visual cortex. Curr. Biol.28, 224–235 (2018). PubMed
Plesinger, F., Jurco, J., Halamek, J. & Jurak, P. SignalPlant: An open signal processing software platform. Physiol. Meas.37, N38 (2016). PubMed
Lio, G., Thobois, S., Ballanger, B., Lau, B. & Boulinguez, P. Removing deep brain stimulation artifacts from the electroencephalogram: Issues, recommendations and an open-source toolbox. Clin. Neurophysiol.129, 2170–2185 (2018). PubMed
Lamoš, M. et al. The effect of deep brain stimulation in Parkinson’s disease reflected in EEG microstates. NPJ Parkinsons Dis.9, 63 (2023). PubMed PMC
Bočková, M. et al. Suboptimal response to STN-DBS in Parkinson’s disease can be identified via reaction times in a motor cognitive paradigm. J. Neural Transm127, 1579–1588 (2020). PubMed
Chaumon, M., Bishop, D. V. M. & Busch, N. A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods250, 47–63 (2015). PubMed
Brunet, D., Murray, M. M. & Michel, C. M. Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 1–15 (2011). (2011). PubMed PMC
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage15, 273–289 (2002). PubMed
Coito, A., Michel, C. M., Van Mierlo, P., Vulliemoz, S. & Plomp, G. Directed functional brain connectivity based on EEG source imaging: Methodology and application to temporal lobe epilepsy. IEEE Trans. Biomed. Eng.63, 2619–2628 (2016). PubMed
Litvak, V. et al. Movement-related changes in local and long-range synchronization in Parkinson’s disease revealed by simultaneous magnetoencephalography and intracranial recordings. J. Neurosci.32, 10541–10553 (2012). PubMed PMC
Wiest, C. et al. Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia. Exp. Neurol.351, 113999 (2022). PubMed PMC
Seeber, M. et al. Subcortical electrophysiological activity is detectable with high-density EEG source imaging. Nat. Commun.10, 753 (2019). PubMed PMC
Stam, C. J., Nolte, G. & Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp.28, 1178–1193 (2007). PubMed PMC
Cohen, M. X. Effects of time lag and frequency matching on phase-based connectivity. J. Neurosci. Methods250, 137–146 (2015). PubMed
Birot, G. et al. Head model and electrical source imaging: A study of 38 epileptic patients. Neuroimage Clin.5, 77–83 (2014). PubMed PMC
Michel, C. M. & Brunet, D. EEG source imaging: A practical review of the analysis steps. Front. Neurol.10, 325 (2019). PubMed PMC
Kahan, J. et al. Resting state functional MRI in Parkinson’s disease: The impact of deep brain stimulation on ‘effective’connectivity. Brain137, 1130–1144 (2014). PubMed PMC
Middlebrooks, E. H. et al. Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: A hypothesis for the mechanism of action and a potential biomarker for outcomes. Neurosurg. Focus45, E7 (2018). PubMed
Younce, J. R. et al. Resting-state functional connectivity predicts STN DBS Clinical Response. Mov. Disord.36, 662–671 (2021). PubMed PMC
Horn, A. et al. Connectivity predicts deep brain stimulation outcome in P arkinson disease. Ann. Neurol.82, 67–78 (2017). PubMed PMC
Schneider, L., Seeger, V., Timmermann, L. & Florin, E. Electrophysiological resting state networks of predominantly akinetic-rigid Parkinson patients: Effects of dopamine therapy. Neuroimage Clin.25, 102147 (2020). PubMed PMC
Horn, A., Neumann, W. J., Degen, K., Schneider, G. H. & Kühn, A. A. Toward an electrophysiological sweet spot for deep brain stimulation in the subthalamic nucleus. Hum. Brain Mapp.38, 3377–3390 (2017). PubMed PMC
Sobesky, L. et al. Subthalamic and pallidal deep brain stimulation: Are we modulating the same network? Brain145, 251–262 (2022). PubMed
Fumagalli, M. et al. Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions. Soc. Neurosci.6, 243–256 (2011). PubMed
Huebl, J. et al. Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson’s disease. Cortex60, 69–81 (2014). PubMed
Welter, M. L. et al. Basal ganglia dysfunction in OCD: Subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy. Transl Psychiatry1, e5–e5 (2011). PubMed PMC
Rappel, P. et al. Subthalamic theta activity: A novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry8, 118 (2018). PubMed PMC
Brown, P. Oscillatory nature of human basal ganglia activity: Relationship to the pathophysiology of Parkinson’s disease. Mov. Disord18, 357–363 (2003). PubMed
Androulidakis, A. G. et al. Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain130, 457–468 (2007). PubMed
Doyle, L. M. F. et al. Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with Parkinson’s disease. Eur. J. Neurosci.21, 1403–1412 (2005). PubMed
Kühn, A. A. et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain127, 735–746 (2004). PubMed
Abbruzzese, G. & Berardelli, A. Sensorimotor integration in movement disorders. Mov. Disord.18, 231–240 (2003). PubMed
Cole, R. C., Okine, D. N., Yeager, B. E. & Narayanan, N. S. Neuromodulation of cognition in Parkinson’s disease. Prog Brain Res.269, 435–455 (2022). PubMed PMC
Brittain, J. S. & Cagnan, H. Recent trends in the Use of Electrical Neuromodulation in Parkinson’s Disease. Curr. Behav. Neurosci. Rep.5, 170–178 (2018). PubMed PMC
You, Z. et al. Efforts of subthalamic nucleus deep brain stimulation on cognitive spectrum: From explicit to implicit changes in the patients with Parkinson’s disease for 1 year. CNS Neurosci. Ther.26, 972–980 (2020). PubMed PMC
Vanegas-Arroyave, N. et al. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain139, 1200–1210 (2016). PubMed PMC
Albano, L. et al. Functional connectivity in Parkinson’s disease candidates for deep brain stimulation. NPJ Parkinsons Dis.8, 4 (2022). PubMed PMC
Yousif, N., Bain, P. G., Nandi, D. & Borisyuk, R. A population model of deep brain stimulation in movement disorders from circuits to cells. Front. Hum. Neurosci.14, 55 (2020). PubMed PMC
Meier, J. M. et al. Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with the virtual brain. Exp. Neurol.354, 114111 (2022). PubMed
Maith, O. et al. A computational model-based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting-state fMRI. Eur. J. Neurosci.53, 2278–2295 (2021). PubMed
Xia, M., Wang, J. & He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS One8, e68910 (2013). PubMed PMC