Symmetry breaking organizes the brain's resting state manifold
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
945539
HORIZON EUROPE Framework Programme
ANR-22-PESN-0012
Agence Nationale de la Recherche
ANR-22-PESN-0012
Agence Nationale de la Recherche
PubMed
39738729
PubMed Central
PMC11686292
DOI
10.1038/s41598-024-83542-w
PII: 10.1038/s41598-024-83542-w
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain Mapping methods MeSH
- Models, Neurological * MeSH
- Brain * physiology diagnostic imaging MeSH
- Nerve Net physiology MeSH
- Rest * physiology MeSH
- Computer Simulation MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Neurology University of Minnesota Minneapolis MN USA
Department of Psychiatry and Behavioral Sciences University of Minnesota Minneapolis MN USA
INSERM INS Institut de Neurosciences des Systèmes Aix Marseille University 13005 Marseille France
See more in PubMed
Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. U.S.A.104, 10240–10245 (2007). PubMed PMC
Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R. & Jirsa, V. K. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Comput. Biol.4, e1000196 (2008). PubMed PMC
Deco, G., Jirsa, V. K. & McIntosh, A. R. Resting brains never rest: Computational insights into potential cognitive architectures. Trends Neurosci.36, 268–274 (2013). PubMed
Cabral, J., Kringelbach, M. L. & Deco, G. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms. Neuroimage160, 84–96 (2017). PubMed
Gusnard, D. A., Raichle, M. E. & Raichle, M. E. Searching for a baseline: Functional imaging and the resting human brain. Nat. Rev. Neurosci.2, 685–694 (2001). PubMed
Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A.103, 13848–13853 (2006). PubMed PMC
Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci.12, 43–56 (2011). PubMed
Hutchison, R. M. et al. Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage80, 360–378 (2013). PubMed PMC
Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage160, 41–54 (2017). PubMed
Shine, J. M. et al. The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron92, 544–554 (2016). PubMed PMC
Cavanna, F., Vilas, M. G., Palmucci, M. & Tagliazucchi, E. Dynamic functional connectivity and brain metastability during altered states of consciousness. Neuroimage180, 383–395 (2018). PubMed
Battaglia, D. et al. Dynamic functional connectivity between order and randomness and its evolution across the human adult lifespan. Neuroimage222, 117156 (2020). PubMed
Petkoski, S., Ritter, P. & Jirsa, V. K. White-matter degradation and dynamical compensation support age-related functional alterations in human brain. Cereb. Cortexbhac500, 1–16 (2023). PubMed PMC
Braun, U. et al. From maps to multi-dimensional network mechanisms of mental disorders. Neuron97, 14–31 (2018). PubMed PMC
Jones, D. T. et al. Non-stationarity in the "resting brain’s" modular architecture. PLoS ONE7, e39731 (2012). PubMed PMC
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L. & Breakspear, M. Time-resolved resting-state brain networks. Proc. Natl. Acad. Sci. USA111, 10341–10346 (2014). PubMed PMC
Baker, A. P. et al. Fast transient networks in spontaneous human brain activity. Elife3, e01867 (2014). PubMed PMC
Beim Graben, P. et al. Metastable resting state brain dynamics. Front. Comput. Neurosci.13, 62 (2019). PubMed PMC
Tagliazucchi, E., Balenzuela, P., Fraiman, D. & Chialvo, D. R. Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front. Physiol.3, 15 (2012). PubMed PMC
Liu, X., Zhang, N., Chang, C. & Duyn, J. H. Co-activation patterns in resting-state fMRI signals. Neuroimage180, 485–494 (2018). PubMed PMC
Esfahlani, F. Z. et al. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proc. Natl. Acad. Sci. USA117, 28393–28401 (2020). PubMed PMC
Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex31, 3986–4005 (2021). PubMed PMC
Mišić, B. et al. Network-level structure-function relationships in human neocortex. Cereb. Cortex26, 3285–3296 (2016). PubMed PMC
Breakspear, M. Dynamic models of large-scale brain activity. Nat. Neurosci.20, 340–352 (2017). PubMed
O’Byrne, J. & Jerbi, K. How critical is brain criticality?. Trends Neurosci.45(11), 820–837 (2022). PubMed
Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O. & Kötter, R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. USA106, 10302–10307 (2009). PubMed PMC
Deco, G. et al. Dynamical consequences of regional heterogeneity in the brain’s transcriptional landscape. Sci. Adv.7, eabf4752 (2021). PubMed PMC
Melozzi, F. et al. Individual structural features constrain the mouse functional connectome. Proc. Natl. Acad. Sci. USA116(52), 26961–26969 (2019). PubMed PMC
Shine, J. M. et al. The dynamic basis of cognition: an integrative core under the control of the ascending neuromodulatory system (2018).
Roberts, J. A. et al. Metastable brain waves. Nat. Commun.10, 1056 (2019). PubMed PMC
Courtiol, J., Guye, M., Bartolomei, F., Petkoski, S. & Jirsa, V. K. Dynamical mechanisms of interictal resting-state functional connectivity in epilepsy. J. Neurosci.40, 5572–5588 (2020). PubMed PMC
Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G. & Jirsa, V. K. Functional connectivity dynamics: Modeling the switching behavior of the resting state. Neuroimage105, 525–535 (2015). PubMed
Machamer, P., Darden, L. & Craver, C. F. Thinking about mechanisms. Philos. Sci.67, 1–25 (2000).
Jirsa, V. in Selbstorganisation–ein Paradigma f ü r die Humanwissenschaften 89–102 (Springer, 2020).
Pillai, A. S. & Jirsa, V. K. Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron94, 1010–1026 (2017). PubMed
Huys, R., Perdikis, D. & Jirsa, V. K. Functional architectures and structured flows on manifolds: A dynamical framework for motor behavior. Psychol. Rev.121, 302–336 (2014). PubMed
McIntosh, A. R. & Jirsa, V. K. The hidden repertoire of brain dynamics and dysfunction. Netw Neurosci3, 994–1008 (2019). PubMed PMC
Woodman, M. M. & Jirsa, V. K. Emergent dynamics from spiking neuron networks through symmetry breaking of connectivity. PLoS ONE8, e64339 (2013). PubMed PMC
Watanabe, T. et al. A pairwise maximum entropy model accurately describes resting-state human brain networks. Nat. Commun.4, 1–10 (2013). PubMed PMC
Watanabe, T. et al. Energy landscapes of resting-state brain networks. Front. Neuroinform.8, 12 (2014). PubMed PMC
Gu, S. et al. The energy landscape of neurophysiological activity implicit in brain network structure. Sci. Rep.8, 2507 (2018). PubMed PMC
Ashourvan, A., Gu, S., Mattar, M. G., Vettel, J. M. & Bassett, D. S. The energy landscape underpinning module dynamics in the human brain connectome. Neuroimage157, 364–380 (2017). PubMed PMC
Vohryzek, J., Deco, G., Cessac, B., Kringelbach, M. L. & Cabral, J. Ghost attractors in spontaneous brain activity: Recurrent excursions into functionally-relevant BOLD phase-locking states. Front. Syst. Neurosci.14, 20 (2020). PubMed PMC
Rabuffo, G., Fousek, J., Bernard, C. & Jirsa, V. Neuronal Cascades shape whole-brain functional dynamics at rest. eNeuro8 (2021). PubMed PMC
Cornblath, E. J. et al. Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands. Commun. Biol.3, 261 (2020). PubMed PMC
Wong, K.-F. & Wang, X.-J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci.26, 1314–1328 (2006). PubMed PMC
Sanz-Leon, P. et al. The Virtual Brain: A simulator of primate brain network dynamics. Front. Neuroinf.7, 10 (2013). PubMed PMC
Montbrió, E., Pazó, D. & Roxin, A. Macroscopic description for networks of spiking neurons. Phys. Rev. X5, 021028 (2015).
Van Essen, D. C. et al. The WU-Minn human connectome project: An overview. Neuroimage80, 62–79 (2013). PubMed PMC
Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A. & Friston, K. J. Comparing hemodynamic models with DCM. Neuroimage38, 387–401 (2007). PubMed PMC
Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci.4, 30–69 (2020). PubMed PMC
Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G. & Ritter, P. Hybrid brain model data. 10.17605/OSF.IO/MNDT8. Available at Open Science Framework Repository under a CC0 1.0 Universal license (2017).
Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science290(2319–2323), 1095–9203. 10.1126/science.290.5500.2319 (2000). PubMed
Mesulam, M. M. From sensation to cognition. Brain121(Pt 6), 1013–1052 (1998). PubMed
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trends Cogn. Sci.24, 302–315. 10.1016/j.tics.2020.01.008 (2020). PubMed
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA113, 12574–12579 (2016). PubMed PMC
Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci.23, 11167–11177 (2003). PubMed PMC
Deco, G. & Jirsa, V. K. Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors. J. Neurosci.32, 3366–3375 (2012). PubMed PMC
Haimovici, A., Tagliazucchi, E., Balenzuela, P. & Chialvo, D. R. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett.110, 178101 (2013). PubMed
Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A. & Betzel, R. F. Dynamic expression of brain functional systems disclosed by fine-scale analysis of edge time series. Netw. Neurosci.5, 405–433 (2021). PubMed PMC
Pope, M., Fukushima, M., Betzel, R. F. & Sporns, O. Modular origins of high-amplitude cofluctuations in fine-scale functional connectivity dynamics. Proc. Natl. Acad. Sci. USA118, e2109380118 (2021). PubMed PMC
Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: A synthesis of neurobiology, models and cognition. Prog. Neurobiol.158, 132–152 (2017). PubMed
Kong, X. et al. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nat. Commun.12, 6373 (2021). PubMed PMC
Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci.8, 700–711 (2007). PubMed
Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron98, 297–305 (2018). PubMed PMC
Huntenburg, J. M., Bazin, P.-L. & Margulies, D. S. Large-scale gradients in human cortical organization. Trends Cogn. Sci.22, 21–31 (2018). PubMed
Ashwin, P., Creaser, J. & Tsaneva-Atanasova, K. Fast and slow domino regimes in transient network dynamics. Phys. Rev. E96, 052309 (2017). PubMed
Ashwin, P., Creaser, J. & Tsaneva-Atanasova, K. Sequential escapes: Onset of slow domino regime via a saddle connection. Eur. Phys. J. Spec. Top.227, 1091–1100 (2018).
Deco, G., Senden, M. & Jirsa, V. How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model. Front. Comput. Neurosci.6, 68 (2012). PubMed PMC
Kim, J., Joshi, A., Frank, L. & Ganguly, K. Cortical–hippocampal coupling during manifold exploration in motor cortex. Nature (2022). PubMed PMC
Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci.22, 1512–1520 (2019). PubMed
Favaretto, C. et al. Subcortical-cortical dynamical states of the human brain and their breakdown in stroke. Nat. Commun.13, 5069 (2022). PubMed PMC
Rué-Queralt, J. et al. Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun. Biol.4, 1–11 (2021). PubMed PMC
Gao, S., Mishne, G. & Scheinost, D. Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics. Hum. Brain Mapp.42, 4510–4524 (2021). PubMed PMC
Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage180, 577–593 (2018). PubMed
Britz, J., Van De Ville, D. & Michel, C. M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage52, 1162–1170 (2010). PubMed
Bréchet, L. et al. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage194, 82–92 (2019). PubMed
Drew, P. J., Mateo, C., Turner, K. L., Yu, X. & Kleinfeld, D. Ultra-slow oscillations in fMRI and resting-state connectivity: Neuronal and vascular contributions and technical confounds. Neuron107, 782–804 (2020). PubMed PMC
Wang, X.-J. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat. Rev. Neurosci.21, 169–178 (2020). PubMed PMC
Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H. & Wang, X. J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron88, 419–431 (2015). PubMed PMC
Wang, P. et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci. Adv.5, eaat7854 (2019). PubMed PMC
Shine, J. M. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics (2020). PubMed
Kringelbach, M. L. et al. Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc. Natl. Acad. Sci.117, 9566–9576 (2020). PubMed PMC
Aquino, K. M. et al. On the intersection between data quality and dynamical modelling of large-scale fMRI signals. Neuroimage256, 119051 (2022). PubMed
Van De Ville, D., Farouj, Y., Preti, M. G., Liégeois, R. & Amico, E. When makes you unique: Temporality of the human brain fingerprint. Sci. Adv.7, eabj0751 (2021). PubMed PMC
Palva, J. M. & Palva, S. Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage62, 2201–2211 (2012). PubMed
Destexhe, A., Hughes, S. W., Rudolph, M. & Crunelli, V. Are corticothalamic ‘up’states fragments of wakefulness?. Trends Neurosci.30, 334–342 (2007). PubMed PMC
Lavanga, M. et al. The virtual aging brain: Causal inference supports interhemispheric dedifferentiation in healthy aging. Neuroimage283, 120403 (2023). PubMed
Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science369, 988–992 (2020). PubMed
Schirner, M. et al. Brain simulation as a cloud service: The Virtual Brain on EBRAINS. Neuroimage251, 118973 (2022). PubMed
Müller, E. J., Munn, B. R. & Shine, J. M. Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat. Commun.11, 6337 (2020). PubMed PMC
Munn, B. R., Müller, E. J., Wainstein, G. & Shine, J. M. The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat. Commun.12, 6016 (2021). PubMed PMC
Cisek, P. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys.81, 2265–2287 (2019). PubMed PMC
Domhof, J. W. M., Jung, K., Eickhoff, S. B. & Popovych, O. V. Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels. Netw. Neurosci.5, 798–830 (2021). PubMed PMC
Hashemi, M. et al. Simulation-based inference on virtual brain models of disorders. Mach. Learn. Sci. Technol.5, 035019 (2024).
Sanz-Leon, P., Knock, S. A., Spiegler, A. & Jirsa, V. K. Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage111, 385–430 (2015). PubMed
Trebaul, L. et al. Probabilistic functional tractography of the human cortex revisited. Neuroimage181, 414–429 (2018). PubMed PMC
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage31, 968–980 (2006). PubMed
Allen, E. A. et al. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex24, 663–676 (2014). PubMed PMC
Preti, M. G. & Van De Ville, D. Decoupling of brain function from structure reveals regional behavioral specialization in humans. Nat. Commun.10, 4747 (2019). PubMed PMC
Yamapi, R., Filatrella, G. & Aziz-Alaoui, M. A. Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos20, 013114 (2010). PubMed
Vos de Wael, R. BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol.3, 103 (2020). PubMed PMC
Domhof, J. W. M., Jung, K., Eickhoff, S. B. & Popovych, O. V. Parcellation-based resting-state blood-oxygen-level-dependent (BOLD) signals of a healthy cohort (v1.0) (2022).