Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence
Language English Country United States Media electronic
Document type Journal Article
PubMed
39746750
PubMed Central
PMC11912911
DOI
10.1261/rna.080324.124
PII: rna.080324.124
Knihovny.cz E-resources
- Keywords
- ADAR, ALKBH5, FTO, RNA editing, adenosine methylation, inosine,
- MeSH
- Adenosine * analogs & derivatives metabolism genetics analysis MeSH
- AlkB Homolog 5, RNA Demethylase * metabolism genetics MeSH
- Chromatography, Liquid methods MeSH
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO * metabolism genetics MeSH
- HEK293 Cells MeSH
- Inosine * metabolism genetics MeSH
- Liquid Chromatography-Mass Spectrometry MeSH
- Humans MeSH
- RNA, Messenger * genetics metabolism MeSH
- RNA Processing, Post-Transcriptional MeSH
- Tandem Mass Spectrometry * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine * MeSH
- AlkB Homolog 5, RNA Demethylase * MeSH
- ALKBH5 protein, human MeSH Browser
- FTO protein, human MeSH Browser
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO * MeSH
- Inosine * MeSH
- RNA, Messenger * MeSH
- N-methyladenosine MeSH Browser
The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is, however, not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine, and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here, we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify away from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, the upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.
Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA. 2014. Structure of human RNA N6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res 42: 4741–4754. 10.1093/nar/gku085 DOI
Bai L, Xiang Y, Tang M, Liu S, Chen Q, Chen Q, Zhang M, Wan S, Sang Y, Li Q, et al. 2023. ALKBH5 controls the meiosis-coupled mRNA clearance in oocytes by removing the N6-methyladenosine methylation. Nat Commun 14: 6532. 10.1038/s41467-023-42302-6 PubMed DOI PMC
Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. 2017. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45: 11356–11370. 10.1093/nar/gkx778 PubMed DOI PMC
Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, et al. 2009. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85: 106–111. 10.1016/j.ajhg.2009.06.002 PubMed DOI PMC
Boulias K, Toczydlowska-Socha D, Hawley BR, Liberman N, Takashima K, Zaccara S, Guez T, Vasseur JJ, Debart F, Aravind L, et al. 2019. Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol Cell 75: 631–643 e638. 10.1016/j.molcel.2019.06.006 PubMed DOI PMC
Buemi V, Schillaci O, Santorsola M, Bonazza D, Broccia PV, Zappone A, Bottin C, Dell'Omo G, Kengne S, Cacchione S, et al. 2022. TGS1 mediates 2,2,7-trimethyl guanosine capping of the human telomerase RNA to direct telomerase dependent telomere maintenance. Nat Commun 13: 2302. 10.1038/s41467-022-29907-z PubMed DOI PMC
Chao Y, Shang J, Ji W. 2020. ALKBH5-m6A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia. Biochem Biophys Res Commun 521: 499–506. 10.1016/j.bbrc.2019.10.145 PubMed DOI
Covelo-Molares H, Obrdlik A, Postulkova I, Dohnalkova M, Gregorova P, Ganji R, Potesil D, Gawriyski L, Varjosalo M, Vanacova S. 2021. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res 49: 10895–10910. 10.1093/nar/gkab900 PubMed DOI PMC
Darnell RB, Ke S, Darnell JE Jr. 2018. Pre-mRNA processing includes N6 methylation of adenosine residues that are retained in mRNA exons and the fallacy of “RNA epigenetics”. RNA 24: 262–267. 10.1261/rna.065219.117 PubMed DOI PMC
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485: 201–206. 10.1038/nature11112 PubMed DOI
Eisenberg E, Levanon EY. 2018. A-to-I RNA editing—immune protector and transcriptome diversifier. Nat Rev Genet 19: 473–490. 10.1038/s41576-018-0006-1 PubMed DOI
Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu W, Tong Y, Cheng C, Chen Z. 2014. Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem 289: 11571–11583. 10.1074/jbc.M113.546168 PubMed DOI PMC
Franke J, Gehlen J, Ehrenhofer-Murray AE. 2008. Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1. J Cell Sci 121: 3553–3560. 10.1242/jcs.033308 PubMed DOI
Galloway A, Atrih A, Grzela R, Darzynkiewicz E, Ferguson MAJ, Cowling VH. 2020. CAP-MAP: cap analysis protocol with minimal analyte processing, a rapid and sensitive approach to analysing mRNA cap structures. Open Biol 10: 190306. 10.1098/rsob.190306 PubMed DOI PMC
Gao Y, Zimmer JT, Vasic R, Liu C, Gbyli R, Zheng SJ, Patel A, Liu W, Qi Z, Li Y, et al. 2023. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control. Cell Rep 42: 113163. 10.1016/j.celrep.2023.113163 PubMed DOI PMC
Grozhik AV, Olarerin-George AO, Sindelar M, Li X, Gross SS, Jaffrey SR. 2019. Antibody cross-reactivity accounts for widespread appearance of m1A in 5′UTRs. Nat Commun 10: 5126. 10.1038/s41467-019-13146-w PubMed DOI PMC
He PC, He C. 2021. m6A RNA methylation: from mechanisms to therapeutic potential. EMBO J 40: e105977. 10.15252/embj.2020105977 PubMed DOI PMC
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7: 885–887. 10.1038/nchembio.687 PubMed DOI PMC
Jiang Y, Wan Y, Gong M, Zhou S, Qiu J, Cheng W. 2020. RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. J Cell Mol Med 24: 6137–6148. 10.1111/jcmm.15228 PubMed DOI PMC
Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, He Y, Ma H. 2022. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer 21: 97. 10.1186/s12943-022-01572-2 PubMed DOI PMC
Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al. 2015. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29: 2037–2053. 10.1101/gad.269415 DOI
Kellner S, Neumann J, Rosenkranz D, Lebedeva S, Ketting RF, Zischler H, Schneider D, Helm M. 2014. Profiling of RNA modifications by multiplexed stable isotope labelling. Chem Commun (Camb) 50: 3516–3518. 10.1039/c3cc49114e PubMed DOI
Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, Helm M, Lyko F. 2017. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res 27: 1589–1596. 10.1101/gr.210666.116 PubMed DOI PMC
Li Y, Wang NX, Yin C, Jiang SS, Li JC, Yang SY. 2022. RNA editing enzyme ADAR1 regulates METTL3 in an editing dependent manner to promote breast cancer progression via METTL3/ARHGAP5/YTHDF1 axis. Int J Mol Sci 23: 9656. 10.3390/ijms23179656 PubMed DOI PMC
Licht K, Hartl M, Amman F, Anrather D, Janisiw MP, Jantsch MF. 2019. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res 47: 3–14. 10.1093/nar/gky1163 PubMed DOI PMC
Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 2015. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12: 767–772. 10.1038/nmeth.3453 PubMed DOI PMC
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10: 93–95. 10.1038/nchembio.1432 PubMed DOI PMC
Mansfield KD. 2024. RNA binding by the m6A methyltransferases METTL16 and METTL3. Biology (Basel) 13: 391. 10.3390/biology13060391 PubMed DOI PMC
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, et al. 2017. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541: 371–375. 10.1038/nature21022 PubMed DOI PMC
Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur JJ, Rentmeister A, Gross SS, Pellizzoni L, Debart F, et al. 2019. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat Chem Biol 15: 340–347. 10.1038/s41589-019-0231-8 PubMed DOI PMC
Meyer KD, Jaffrey SR. 2014. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15: 313–326. 10.1038/nrm3785 PubMed DOI PMC
Meyer KD, Jaffrey SR. 2017. Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol 33: 319–342. 10.1146/annurev-cellbio-100616-060758 PubMed DOI PMC
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149: 1635–1646. 10.1016/j.cell.2012.05.003 PubMed DOI PMC
Murakami S, Jaffrey SR. 2022. Hidden codes in mRNA: control of gene expression by m6A. Mol Cell 82: 2236–2251. 10.1016/j.molcel.2022.05.029 PubMed DOI PMC
Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK. 2017. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169: 824–835.e814. 10.1016/j.cell.2017.05.003 PubMed DOI PMC
Poh HX, Mirza AH, Pickering BF, Jaffrey SR. 2022. Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biol 20: e3001683. 10.1371/journal.pbio.3001683 PubMed DOI PMC
Powell CA, Minczuk M. 2020. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. RNA Biol 17: 451–462. 10.1080/15476286.2020.1712544 PubMed DOI PMC
Qu J, Hou Y, Chen Q, Chen J, Li Y, Zhang E, Gu H, Xu R, Liu Y, Cao W, et al. 2022a. RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways. Oncogene 41: 400–413. 10.1038/s41388-021-02095-8 PubMed DOI PMC
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. 2022b. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 15: 8. 10.1186/s13045-022-01224-4 PubMed DOI PMC
Rajecka V, Skalicky T, Vanacova S. 2019. The role of RNA adenosine demethylases in the control of gene expression. Biochim Biophys Acta Gene Regul Mech 1862: 343–355. 10.1016/j.bbagrm.2018.12.001 PubMed DOI
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8: 2281–2308. 10.1038/nprot.2013.143 PubMed DOI PMC
Rengaraj P, Obrdlik A, Vukic D, Varadarajan NM, Keegan LP, Vanacova S, O'Connell MA. 2021. Interplays of different types of epitranscriptomic mRNA modifications. RNA Biol 18: 19–30. 10.1080/15476286.2021.1969113 PubMed DOI PMC
Richter F, Plehn JE, Bessler L, Hertler J, Jorg M, Cirzi C, Tuorto F, Friedland K, Helm M. 2021. RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. Nucleic Acids Res 50: 4201–4215. 10.1093/nar/gkab1150 PubMed DOI PMC
Saponara AG, Enger MD. 1969. Occurrence of N2,N2,7-trimethylguanosine in minor RNA species of a mammalian cell line. Nature 223: 1365–1366. 10.1038/2231365a0 PubMed DOI
Schaefer M, Pollex T, Hanna K, Lyko F. 2009. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37: e12. 10.1093/nar/gkn954 PubMed DOI PMC
Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, et al. 2014a. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159: 148–162. 10.1016/j.cell.2014.08.028 PubMed DOI PMC
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al. 2014b. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8: 284–296. 10.1016/j.celrep.2014.05.048 PubMed DOI PMC
Seeburg PH, Higuchi M, Sprengel R. 1998. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev 26: 217–229. 10.1016/s0165-0173(97)00062-3 PubMed DOI
Sendinc E, Valle-Garcia D, Dhall A, Chen H, Henriques T, Navarrete-Perea J, Sheng W, Gygi SP, Adelman K, Shi Y. 2019. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75: 620–630.e9. 10.1016/j.molcel.2019.05.030 PubMed DOI PMC
Sinigaglia K, Wiatrek D, Khan A, Michalik D, Sambrani N, Sedmik J, Vukic D, O'Connell MA, Keegan LP. 2019. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim Biophys Acta Gene Regul Mech 1862: 356–369. 10.1016/j.bbagrm.2018.10.011 PubMed DOI
Sun L, Zhang Y, Yang B, Sun S, Zhang P, Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al. 2023. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat Commun 14: 6523. 10.1038/s41467-023-42025-8 PubMed DOI PMC
Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, Zheng H, Klungland A, Yan W. 2018. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci 115: E325–E333. 10.1073/pnas.1717794115 PubMed DOI PMC
Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, Martini M, De Angelis B, De Luca G, Vitiani LR, et al. 2021. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 22: 51. 10.1186/s13059-021-02271-9 PubMed DOI PMC
Terajima H, Lu M, Zhang L, Cui Q, Shi Y, Li J, He C. 2021. N6-methyladenosine promotes induction of ADAR1-mediated A-to-I RNA editing to suppress aberrant antiviral innate immune responses. PLoS Biol 19: e3001292. 10.1371/journal.pbio.3001292 PubMed DOI PMC
Terns MP, Dahlberg JE. 1994. Retention and 5′ cap trimethylation of U3 snRNA in the nucleus. Science 264: 959–961. 10.1126/science.8178154 PubMed DOI
Thuring K, Schmid K, Keller P, Helm M. 2016. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods 107: 48–56. 10.1016/j.ymeth.2016.03.019 PubMed DOI
Torres AG, Pineyro D, Rodriguez-Escriba M, Camacho N, Reina O, Saint-Leger A, Filonava L, Batlle E, Ribas de Pouplana L. 2015. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res 43: 5145–5157. 10.1093/nar/gkv277 PubMed DOI PMC
Vukić D, Cherian A, Keskitalo S, Bong Yih T, Marônek M, Yadav L, Keegan LP, Varjosalo M, O'Connell MA. 2024. Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction. Nucleic Acids Res 52: 14184–14204. 10.1093/nar/gkae1106 PubMed DOI PMC
Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, Cai WM, Cui L, Liu CF, Fu XY, et al. 2019. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 47: e130. 10.1093/nar/gkz751 PubMed DOI PMC
Wang F, Zhang J, Lin X, Yang L, Zhou Q, Mi X, Li Q, Wang S, Li D, Liu XM, et al. 2023. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2. Cell Rep 42: 112150. 10.1016/j.celrep.2023.112150 PubMed DOI
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hobartner C, Sloan KE, Bohnsack MT. 2017. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 18: 2004–2014. 10.15252/embr.201744940 PubMed DOI PMC
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, et al. 2018. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71: 973–985 e975. 10.1016/j.molcel.2018.08.011 PubMed DOI PMC
Wurth L, Gribling-Burrer AS, Verheggen C, Leichter M, Takeuchi A, Baudrey S, Martin F, Krol A, Bertrand E, Allmang C. 2014. Hypermethylated-capped selenoprotein mRNAs in mammals. Nucleic Acids Res 42: 8663–8677. 10.1093/nar/gku580 PubMed DOI PMC
Xiang JF, Yang Q, Liu CX, Wu M, Chen LL, Yang L. 2018. N6-methyladenosines modulate A-to-I RNA editing. Mol Cell 69: 126–135.e6. 10.1016/j.molcel.2017.12.006 PubMed DOI
Yoshinaga M, Han K, Morgens DW, Horii T, Kobayashi R, Tsuruyama T, Hia F, Yasukura S, Kajiya A, Cai T, et al. 2022. The N6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat Commun 13: 6435. 10.1038/s41467-022-34078-y PubMed DOI PMC
Yu J, Shen L, Liu Y, Ming H, Zhu X, Chu M, Lin J. 2020. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Mol Cell Biochem 463: 203–210. 10.1007/s11010-019-03641-5 PubMed DOI
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X, Semenza GL. 2016. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci 113: E2047–E2056. 10.1073/pnas.1602883113 PubMed DOI PMC
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49: 18–29. 10.1016/j.molcel.2012.10.015 PubMed DOI PMC
Zhou Y, Corovic M, Hoch-Kraft P, Meiser N, Mesitov M, Kortel N, Back H, Naarmann-de Vries IS, Katti K, Obrdlik A, et al. 2024. m6A sites in the coding region trigger translation-dependent mRNA decay. Mol Cell 84: 4576–4593.e12. 10.1016/j.molcel.2024.10.033 PubMed DOI