Enhanced Electrochemical Performance of Polyaniline-Boron Doped Diamond Electrode for Supercapacitor Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Academy of Sciences within the Strategy AV21 framework : VP26-Breakthrough Technologies for the Future
CZ.02.01.01/00/22_008/0004596
MEYS OP JAC project SENDISO
LM2023051
CzechNanoLab
SGS24/132/OHK4/3T/13
CTU university project no.
PAN-24-20
Mobility project between the Czech and Polish Academy of Sciences
PubMed
39757489
PubMed Central
PMC12020348
DOI
10.1002/smtd.202401523
Knihovny.cz E-zdroje
- Klíčová slova
- acid‐assisted polymerization, boron‐doped diamond, cyclic voltammetry, electrochemical impedance spectroscopy, polyaniline, supercapacitor,
- Publikační typ
- časopisecké články MeSH
Understanding how to tune the properties of electroactive materials is a key parameter for their applications in energy storage systems. This work presents a comprehensive study in tailoring polyaniline (PANI) suspensions by acid-assisted polymerization method and their subsequent deposition on boron-doped diamond (BDD) supports with low/high B concentrations. The porous or densely packed morphology of PANI is successfully controlled by varying the monomer-to-initiator ratio. The interaction between PANI and BDDs leads to the shift in oxidation and reduction potentials, and the high B doping resulted in the reduction of the oxidation potentials. Notably, the highest specific capacitance of 958 F g-1, which represents 90% of the theoretical capacitance, is recorded for the support with relatively low B content. Moreover, PANI obtained by slow kinetic has a stronger interaction with the B-doped diamond support, which is confirmed by electrochemical impedance spectroscopy. This study provides valuable insights for optimizing PANI suspension preparation methods and selecting appropriate boron doping concentrations in nanodiamond supports for composite electrodes in energy storage applications.
Institute of Macromolecular Chemistry AS CR Heyrovsky nam 2 Prague 6 162 00 Czech Republic
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 6 162 00 Czech Republic
Zobrazit více v PubMed
Winter M., Brodd R. J., Chem. Rev. 2004, 104, 4245. PubMed
Li J., Yu H., Lv Y., Cai Z., Shen Y., Ruhlmann L., Gan L., Liu M., Nanotechnology 2024, 35, 152001. PubMed
Yu S., Yang N., Liu S., Jiang X., Curr. Opin. Solid State Mater. Sci. 2021, 25, 100922.
Shao Y., El‐Kady M. F., Sun J., Li Y., Zhang Q., Zhu M., Wang H., Dunn B., Kaner R. B., Chem. Rev. 2018, 118, 9233. PubMed
Yu X., Yun S., Yeon J. S., Bhattacharya P., Wang L., Lee S. W., Hu X., Park H. S., Adv. Energy Mater. 2018, 8, 1702930.
Yang X., Hu C., Chen Y., Song Z., Miao L., Lv Y., Duan H., Liu M., Gan L., J. Energy Storage 2024, 104, 114509.
Zheng X., Song Z., Zhang D., Du W., Miao L., Lv Y., Xie L., Gan L., Liu M., J. Mater. Chem. A 2024, 12, 15352.
Shi T., Song Z., Lv Y., Zhu D., Miao L., Gan L., Liu M., Chin. Chem. Lett. 2025, 36, 109559.
Chen Y., Miao L., Song Z., Duan H., Lv Y., Gan L., Liu M., Adv. Funct. Mater. 2024, 34, 2409428.
Hu C., Liu P., Song Z., Lv Y., Duan H., Xie L., Miao L., Liu M., Gan L., Chin. Chem. Lett. 2024, 110381.
Chambers A., Prawer S., Ahnood A., Zhan H., Front. Chem. 2022, 10, 924127. PubMed PMC
Uppugalla S., Boddula R., Srinivasan P., J. Solid State Electrochem. 2018, 22, 407.
Qiu B., Li Z., Wang X., Li X., Zhang J., J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 3357.
Qiu B., Wang J., Li Z., Wang X., Li X., Polymers 2020, 12, 310. PubMed PMC
Wu C.‐G., Bein T., Science 1994, 264, 1757. PubMed
Wu J., Zhang Q., Wang J., Huang X., Bai H., Energy Environ. Sci. 2018, 11, 1280.
Sivakkumar S. R., Oh J.‐S., Kim D.‐W., J. Power Sources 2006, 163, 573.
Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L., Macromol. Chem. Phys. 2020, 221, 2000219.
Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E., Macromolecules 2021, 54, 10321.
Ismail R., Šeděnková I., Černochová Z., Romanenko I., Pop‐Georgievski O., Hrubý M., Tomšík E., Biosensors 2022, 12, 446. PubMed PMC
Mousavi M. P. S., Dittmer A. J., Wilson B. E., Hu J., Stein A., Bühlmann P., J. Electrochem. Soc. 2015, 162, A2250.
Kim H., Hong J., Park K.‐Y., Kim H., Kim S.‐W., Kang K., Chem. Rev. 2014, 114, 11788. PubMed
Keskinen J., Sivonen E., Jussila S., Bergelin M., Johansson M., Vaari A., Smolander M., Electrochim. Acta 2012, 85, 302.
Reber D., Grissa R., Becker M., Kühnel R., Battaglia C., Adv. Energy Mater. 2021, 11, 2002913.
Mannayil J., Raman S. M., Sankaran J., Raman R., Ezhuthachan J. M. K. in Low‐Dimensional Materials and Devices, (Eds: Kobayashi N. P., Talin A. A., Davydov A. V., Islam M. S.), SPIE, San Diego, United States: 2018, 25.
Malik R., Zhang L., McConnell C., Schott M., Hsieh Y.‐Y., Noga R., Alvarez N. T., Shanov V., Carbon 2017, 116, 579.
Liu F., Luo S., Liu D., Chen W., Huang Y., Dong L., Wang L., ACS Appl. Mater. Interfaces 2017, 9, 33791. PubMed
Niu Z., Luan P., Shao Q., Dong H., Li J., Chen J., Zhao D., Cai L., Zhou W., Chen X., Xie S., Energy Environ. Sci. 2012, 5, 8726.
Bavio M. A., Acosta G. G., Kessler T., Visintin A., Energy 2017, 130, 22.
Wu Y., Wang Q., Li T., Zhang D., Miao M., Electrochim. Acta 2017, 245, 69.
Pandey K., Yadav P., Mukhopadhyay I., RSC Adv. 2014, 4, 53740.
Zhou H., Zhi X., Zhai H.‐J., Int. J. Hydrogen Energy 2018, 43, 18339.
Fei H., Saha N., Kazantseva N., Babkova T., Machovsky M., Wang G., Bao H., Saha P., J. Mater. Sci.: Mater. Electron. 2018, 29, 3025.
Ding Y., Sheng H., Gong B., Tang P., Pan G., Zeng Y., Yang L., Tang Y., Liu C., Electrochim. Acta 2021, 368, 137615.
Liu D., Du P., Wei W., Wang H., Wang Q., Liu P., Electrochim. Acta 2017, 233, 201.
Hu Z., Kan J., Int. J. Electrochem. Sci. 2017, 12, 7977.
Adusei P. K., Kanakaraj S. N., Gbordzoe S., Johnson K., DeArmond D., Hsieh Y.‐Y., Fang Y., Mishra S., Phan N., Alvarez N. T., Shanov V., Electrochim. Acta 2019, 312, 411.
Wang Y., Niu J., Molecules 2023, 28, 4470. PubMed
Zhang Q., Zhou A., Wang J., Wu J., Bai H., Energy Environ. Sci. 2017, 10, 2372.
Da Silva L. M., De Lima Almeida D. A., Oishi S. S., Couto A. B., Ferreira N. G., J. Solid State Electrochem. 2019, 23, 1871.
Zhao X. Y., Zang J. B., Wang Y. H., Bian L. Y., Yu J. K., Electrochem. Commun. 2009, 11, 1297.
Gao F., Nebel C. E., ACS Appl. Mater. Interfaces 2015, 8, 28244. PubMed
Yu S., Yang N., Zhuang H., Mandal S., Williams O. A., Yang B., Huang N., Jiang X., J. Mater. Chem. A 2017, 5, 1778.
Kohut O., Dragounová K., Ukraintsev E., Szabó O., Kromka A., Tomšík E., Vacuum 2020, 171, 108955.
Jarošová R., De Sousa Bezerra P. M., Munson C., Swain G. M., phys. status solidi 2016, 213, 2087.
Mortet V., Taylor A., Vlčková Živcová Z., Machon D., Frank O., Hubík P., Tremouilles D., Kavan L., Diam. Relat. Mater. 2018, 88, 163.
Utyuzh A. N., Timofeev Y. A., Rakhmanina A. V., Inorg. Mater. 2004, 40, 926.
Zhang T., Xue Z., Xie Y., Huang G., Peng G., RSC Adv. 2022, 12, 26580. PubMed PMC
Macpherson J. V., Phys. Chem. Chem. Phys. 2015, 17, 2935. PubMed
Stejskal J., Sapurina I., Trchová M., Prog. Polym. Sci. 2010, 35, 1420.
Bazant M. Z., Faraday Discuss. 2023, 246, 60. PubMed
Ćirić‐Marjanović G., Trchová M., Stejskal J., J. Raman Spectrosc. 2008, 39, 1375.
Morávková Z., Bober P., Int. J. Polym. Sci. 2018, 2018, 1797216.
Wang W., Yang F., Chen C., Zhang L., Qin Y., Knez M., Adv. Mater. Interfaces 2017, 4, 1600806.
Yu S., Sankaran K. J., Korneychuk S., Verbeeck J., Haenen K., Jiang X., Yang N., Nanoscale 2019, 11, 17939. PubMed
Banerjee D., Sankaran K. J., Deshmukh S., Ficek M., Yeh C.‐J., Ryl J., Lin I.‐N., Bogdanowicz R., Kanjilal A., Haenen K., Sinha Roy S., Nanoscale 2020, 12, 10117. PubMed
Tomšík E., Kohut O., Ivanko I., Pekárek M., Bieloshapka I., Dallas P., J. Phys. Chem. C 2018, 122, 8022.
Odutemowo O. S., Malherbe J. B., Limbach R., Wondraczek L., Wendler E., Undisz A., Njoroge E. G., Idisi D. O., Dhlamini M. S., Appl. Surf. Sci. 2021, 537, 147929.
Chen Z., Jiang Y., Xin B., Jiang S., Liu Y., Lin L., J. Mater. Sci.: Mater. Electron. 2020, 31, 5958.
Lazanas A. C., Prodromidis M. I., ACS Meas. Sci. Au 2023, 3, 162. PubMed PMC
Bredar A. R. C., Chown A. L., Burton A. R., Farnum B. H., ACS Appl. Energy Mater. 2020, 3, 66.
Conway B. E., Birss V., Wojtowicz J., J. Power Sources 1997, 66, 1.
Wang W., Guo S., Lee I., Ahmed K., Zhong J., Favors Z., Zaera F., Ozkan M., Ozkan C. S., Sci. Rep. 2014, 4, 4452. PubMed PMC
Hu C.‐C., Chu C.‐H., J. Electroanal. Chem. 2001, 503, 105.
Bai L., Gao L., Conway B. E., J. Chem. Soc., Faraday Trans. 1993, 89, 235.
Li H., Wang J., Chu Q., Wang Z., Zhang F., Wang S., J. Power Sources 2009, 190, 578.
Peng C., Hu D., Chen G. Z., Chem. Commun. 2011, 47, 4105. PubMed
Silva L. M., Almeida D. A. L., Oishi S. S., Couto A. B., Ferreira N. G., MRS Adv. 2017, 2, 2217.
Fu X., Xia C., Qu J., Lei S., Zuo X., Mao Z., Liu Q., Luo P., Zhang R., Hu S., ChemElectroChem 2022, 9, 202200312.
Kromka A., Rezek B., Remes Z., Michalka M., Ledinsky M., Zemek J., Potmesil J., Vanecek M., Chem. Vap. Depos. 2008, 14, 181.