Novel Acid-Assisted Polymerization Technique for the Synthesis of Polyaniline Films at Room Temperature on Glassy Carbon for Supercapacitor Applications

. 2025 May 27 ; 10 (20) : 20844-20853. [epub] 20250513

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40454049

This study presents polyaniline (PANI) synthesis and characterization by using a novel acid-assisted polymerization technique. Two PANI suspensions with different ammonium peroxydisulfate (APS) concentrations were synthesized at room temperature; i.e., the ratio of aniline to APS was 10:1 for PANI1 and 5:1 for PANI2. SEM measurements revealed distinct structures: a porous nanofibrillar structure for PANI1 and a densely packed structure for PANI2. The electrochemical performance of the fabricated PANI/glassy carbon (GC) electrodes was evaluated using a three-electrode cell configuration at scan rates of 10 and 30 mV/s. The PANI1/GC heterostructure exhibited a specific capacitance of 160 F/g, while this value increased to 407 F/g for the PANI2/GC. This research contributes not only to the understanding of PANI synthesis at room temperature but also to its potential applications in electrochemical energy storage devices.

Zobrazit více v PubMed

Tomšík E., Boahene S., Dragounová K. A., Pfeifer R., Sharma D. K., Szabó O., Walterová Z., Potocký Š., Kromka A.. Enhanced Electrochemical Performance of Polyaniline-Boron Doped Diamond Electrode for Supercapacitor Applications. Small Methods. 2025;9:2401523. doi: 10.1002/smtd.202401523. PubMed DOI PMC

Fu Z., Shu X., Zhang Q., Qin D., Han S., Dong Z.. Solar-Driven Induced Photoelectron Remember Effect Involved in Core–Shell NiCo2S4@Ni3V2O8 Composite Electrode with Superior Electrochemical Energy Storage for Asymmetric Supercapacitor. Energy Convers. Manage. 2025;323:119190. doi: 10.1016/j.enconman.2024.119190. DOI

Dong Z., Zhang Q., Shu X., Hu J., Han S.. Photo-Assisted Charging of Heterostructured NiCo2S4@NiCo-LDH Composite Electrode with Remarkable Photoelectronic Memory Effect for High-Performance Asymmetric Supercapacitor. Energy Convers. Manage. 2024;315:118769. doi: 10.1016/j.enconman.2024.118769. DOI

Zhang Q., Deng Y., Hu Z., Liu Y., Yao M., Liu P.. Seaurchin-like Hierarchical NiCo2 O4 @NiMoO4 Core–Shell Nanomaterials for High Performance Supercapacitors. Phys. Chem. Chem. Phys. 2014;16(42):23451–23460. doi: 10.1039/C4CP02928C. PubMed DOI

Kenesi A. G., Ghorbani M., Lashkenari M. S.. High Electrochemical Performance of PANI/CdO Nanocomposite Based on Graphene Oxide as a Hybrid Electrode Materials for Supercapacitor Application. Int. J. Hydrogen Energy. 2022;47(91):38849–38861. doi: 10.1016/j.ijhydene.2022.09.047. DOI

He Y., Chen W., Gao C., Zhou J., Li X., Xie E.. An Overview of Carbon Materials for Flexible Electrochemical Capacitors. Nanoscale. 2013;5(19):8799–8820. doi: 10.1039/c3nr02157b. PubMed DOI

Su Q., Lin C., Xiang M., Wang N., Sun L., Hu W.. Remarkable Electrochemical Performance of Holey MXene/Graphene Hydrogel-Based Supercapacitor Operated at – 60 °C in Sulfuric Acid Aqueous Electrolyte. J. Solid State Electrochem. 2024;28(9):3263–3274. doi: 10.1007/s10008-024-05894-7. DOI

Ahirrao D. J., Pal A. K., Singh V., Jha N.. Nanostructured Porous Polyaniline (PANI) Coated Carbon Cloth (CC) as Electrodes for Flexible Supercapacitor Device. J. Mater. Sci. Technol. 2021;88:168–182. doi: 10.1016/j.jmst.2021.01.075. DOI

Wang W., Li Q., Pan Y., Ye C. R., Li X., Chen Y., Tang Q., Xu J., Zhu Y.. Reduced Graphene Oxide Film Modified by Tannic Acid for High Areal Performance Supercapacitors. J. Solid State Electrochem. 2024;28(11):4077–4086. doi: 10.1007/s10008-024-05946-y. DOI

Zolfaghari Y., Ghorbani M., Lashkenari M. S.. Electrochemical Study on Zeolitic Imidazolate Framework −67 Modified MnFe2O4/CNT Nanocomposite for Supercapacitor Electrode. Electrochim. Acta. 2021;380:138234. doi: 10.1016/j.electacta.2021.138234. DOI

Bibi A., Shakoor A., Raffi M., Hina M., Niaz N. A., Fatima S. A., Qureshi M. N.. Exploring the Potential of Polyaniline-Calcium Titanate (PANI-CaTiO3) Nanocomposites in Supercapacitors: Synthesis and Electrochemical Investigation. J. Energy Storage. 2024;78:110321. doi: 10.1016/j.est.2023.110321. DOI

Zhang W., Zuo H., Cheng Z., Shi Y., Guo Z., Meng N., Thomas A., Liao Y.. Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. Adv. Mater. 2022;34(18):2104952. doi: 10.1002/adma.202104952. PubMed DOI

Itoi H., Hayashi S., Matsufusa H., Ohzawa Y.. Electrochemical Synthesis of Polyaniline in the Micropores of Activated Carbon for High-Performance Electrochemical Capacitors. Chem. Commun. 2017;53(22):3201–3204. doi: 10.1039/C6CC08822H. PubMed DOI

Abdah M. A. A. M., Azman N. H. N., Kulandaivalu S., Sulaiman Y.. Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Mater. Des. 2020;186:108199. doi: 10.1016/j.matdes.2019.108199. DOI

Anwar N., Shakoor A., Ali G., Ahmad H., Niaz N. A., Mahmood A.. Synthesis and Electrochemical Characterization of Polyaniline Doped Cadmium Oxide (PANI-CdO) Nanocomposites for Supercapacitor Applications. J. Energy Storage. 2022;55:105446. doi: 10.1016/j.est.2022.105446. DOI

Chodankar N. R., Pham H. D., Nanjundan A. K., Fernando J. F. S., Jayaramulu K., Golberg D., Han Y., Dubal D. P.. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small. 2020;16(37):2002806. doi: 10.1002/smll.202002806. PubMed DOI

Zhang J., Su L., Ma L., Zhao D., Qin C., Jin Z., Zhao K.. Preparation of Inflorescence-like ACNF/PANI/NiO Composite with Three-Dimension Nanostructure for High Performance Supercapacitors. J. Electroanal. Chem. 2017;790:40–49. doi: 10.1016/j.jelechem.2017.02.047. DOI

Sugimoto R. I., Yoshino K., Hayashi S.. Preparation and Properties of Conducting Heterocyclic Polymer Films by Chemical Method. Jpn. J. Appl. Phys. 1984;23(12):L899–L900. doi: 10.1143/JJAP.23.L899. DOI

Diaz A. F., Kanazawa K. K., Gardini G. P.. Electrochemical Polymerization of Pyrrole. J. Chem. Soc., Chem. Commun. 1979;(14):635–636. doi: 10.1039/c39790000635. DOI

Kuwabara J., Tsuchida W., Guo S., Hu Z., Yasuda T., Kanbara T.. Synthesis of Conjugated Polymers via Direct C-H/C-Cl Coupling Reactions Using a Pd/Cu Binary Catalytic System. Polym. Chem. 2019;10(18):2298–2304. doi: 10.1039/C9PY00232D. DOI

Tusy C., Huang L., Jin J., Xia J.. Synthesis and Investigation of Novel Thiophene Derivatives Containing Heteroatom Linkers for Solid State Polymerization. RSC Adv. 2014;4(16):8011–8014. doi: 10.1039/c3ra45014g. DOI

Bonillo B., Swager T. M.. Chain-Growth Polymerization of 2-Chlorothiophenes Promoted by Lewis Acids. J. Am. Chem. Soc. 2012;134(46):18916–18919. doi: 10.1021/ja308498h. PubMed DOI

Ismail R., Šeděnková I., Svoboda J., Lukešová M., Walterová Z., Tomšík E.. Acid-Assisted Polymerization: The Novel Synthetic Route of Sensing Layers Based on PANI Films and Chelating Agents Protected by Non-Biofouling Layer for Fe2+ or Fe3+ Potentiometric Detection. J. Mater. Chem. B. 2023;11(7):1545–1556. doi: 10.1039/D2TB02450K. PubMed DOI

Aydogan B., Gunbas G. E., Durmus A., Toppare L., Yagci Y.. Highly Conjugated Thiophene Derivatives as New Visible Light Sensitive Photoinitiators for Cationic Polymerization. Macromolecules. 2010;43(1):101–106. doi: 10.1021/ma901858p. DOI

Gvozdenović M. M., Grgur B. N.. Electrochemical Polymerization and Initial Corrosion Properties of Polyaniline-Benzoate Film on Aluminum. Prog. Org. Coat. 2009;65(3):401–404. doi: 10.1016/j.porgcoat.2009.01.004. DOI

Stejskal J., Sapurina I., Trchová M.. Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation. Prog. Polym. Sci. 2010;35(12):1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006. DOI

Stejskal J., Sapurina I., Trchová M., Konyushenko E. N.. Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. Macromolecules. 2008;41(10):3530–3536. doi: 10.1021/ma702601q. DOI

Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L.. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221(18):2000219. doi: 10.1002/macp.202000219. DOI

Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E.. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules. 2021;54(22):10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI

Ismail R., Šeděnková I., Černochová Z., Romanenko I., Pop-Georgievski O., Hrubý M., Tomšík E.. Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors. 2022;12(7):446. doi: 10.3390/bios12070446. PubMed DOI PMC

Sun B., Wang D., Jiang Y., Wang R., Lyu L., Diao G., Zhang W., Pang H.. Cyclodextrin Metal–Organic Framework Functionalized Carbon Materials with Optimized Interface Electronics and Selective Supramolecular Channels for High-Performance Lithium–Sulfur Batteries. Adv. Mater. 2024;36(52):2415633. doi: 10.1002/adma.202415633. PubMed DOI

Zhu S., Guan C., Wu Y., Ni J., Han G.. Upgraded Structure and Application of Coal-Based Graphitic Carbons Through Flash Joule Heating. Adv. Funct. Mater. 2024;34(39):2403961. doi: 10.1002/adfm.202403961. DOI

Huang J., Zhu S., Guan C., Huang Z., Zhang J., Ni J., Han G.. Molten-SaltSynthesisofAnthracite-Based Porous Carbon for Microscale Supercapacitors and Strain Sensors. Adv. Mater. Technol. 2023;9(21):2301523. doi: 10.1002/admt.202301523. DOI

Van der Linden W. E., Dieker J. W.. Glassy Carbon as Electrode Material in Electro- Analytical Chemistry. Anal. Chim. Acta. 1980;119(1):1–24. doi: 10.1016/S0003-2670(00)00025-8. DOI

Dekanski A., Stevanović J., Stevanović R., Nikolić B. Ž., Jovanović V. M.. Glassy Carbon Electrodes: I. Characterization and Electrochemical Activation. Carbon. 2001;39(8):1195–1205. doi: 10.1016/S0008-6223(00)00228-1. DOI

Abdel-Aziz A. M., Hassan H. H., Badr I. H. A.. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS Omega. 2022;7(38):34127–34135. doi: 10.1021/acsomega.2c03427. PubMed DOI PMC

Tuinstra F., Koenig J. L.. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53(3):1126–1130. doi: 10.1063/1.1674108. DOI

Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cançado L. G., Jorio A., Saito R.. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007;9(11):1276–1290. doi: 10.1039/B613962K. PubMed DOI

Thomsen C., Reich S.. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000;85(24):5214. doi: 10.1103/PhysRevLett.85.5214. PubMed DOI

Jurkiewicz K., Pawlyta M., Zygadło D., Chrobak D., Duber S., Wrzalik R., Ratuszna A., Burian A.. Evolution of Glassy Carbon under Heat Treatment: Correlation Structure–Mechanical Properties. J. Mater. Sci. 2018;53(5):3509–3523. doi: 10.1007/s10853-017-1753-7. DOI

Shinzawa R., Otsuka A., Nakamura A.. Growth of Glassy Carbon Thin Films and Its pH Sensor Applications. SN Appl. Sci. 2019;1(2):171. doi: 10.1007/s42452-019-0181-5. DOI

Kohut O., Dragounová K., Ukraintsev E., Szabó O., Kromka A., Tomšík E.. Non-Conducting Polyaniline Nanofibrils and Their Physico-Chemical Behavior. Vacuum. 2020;171:108955. doi: 10.1016/j.vacuum.2019.108955. DOI

Morávková Z., Bober P.. Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. Int. J. Polym. Sci. 2018;2018:1797216. doi: 10.1155/2018/1797216. DOI

Wang W., Yang F., Chen C., Zhang L., Qin Y., Knez M.. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Adv. Mater. Interfaces. 2017;4(4):1600806. doi: 10.1002/admi.201600806. DOI

Morávková Z., Trchová M., Dybal J., Bláha M., Stejskal J.. The Interaction of Thin Polyaniline Films with Various H-phosphonates: Spectroscopy and Quantum Chemical Calculations. J. Appl. Polym. Sci. 2018;135(38):46728. doi: 10.1002/app.46728. DOI

Kumar A., Kumar A., Mudila H., Awasthi K., Kumar V.. Synthesis and Thermal Analysis of Polyaniline (PANI) J. Phys.: Conf. Ser. 2020;1531(1):012108. doi: 10.1088/1742-6596/1531/1/012108. DOI

Kalakonda P., Kalakonda P. B., Banne S.. Studies of Electrical, Thermal, and Mechanical Properties of Single-Walled Carbon Nanotube and Polyaniline of Nanoporous Nanocomposites. Nanomater. Nanotechnol. 2021;11:184798042110011. doi: 10.1177/18479804211001140. DOI

Chen Z., Jiang Y., Xin B., Jiang S., Liu Y., Lin L.. Electrochemical Analysis of Conducting Reduced Graphene Oxide/Polyaniline/Polyvinyl Alcohol Nanofibers as Supercapacitor Electrodes. J. Mater. Sci.: Mater. Electron. 2020;31(8):5958–5965. doi: 10.1007/s10854-020-03204-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...