Novel Acid-Assisted Polymerization Technique for the Synthesis of Polyaniline Films at Room Temperature on Glassy Carbon for Supercapacitor Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40454049
PubMed Central
PMC12120577
DOI
10.1021/acsomega.5c02109
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study presents polyaniline (PANI) synthesis and characterization by using a novel acid-assisted polymerization technique. Two PANI suspensions with different ammonium peroxydisulfate (APS) concentrations were synthesized at room temperature; i.e., the ratio of aniline to APS was 10:1 for PANI1 and 5:1 for PANI2. SEM measurements revealed distinct structures: a porous nanofibrillar structure for PANI1 and a densely packed structure for PANI2. The electrochemical performance of the fabricated PANI/glassy carbon (GC) electrodes was evaluated using a three-electrode cell configuration at scan rates of 10 and 30 mV/s. The PANI1/GC heterostructure exhibited a specific capacitance of 160 F/g, while this value increased to 407 F/g for the PANI2/GC. This research contributes not only to the understanding of PANI synthesis at room temperature but also to its potential applications in electrochemical energy storage devices.
Zobrazit více v PubMed
Tomšík E., Boahene S., Dragounová K. A., Pfeifer R., Sharma D. K., Szabó O., Walterová Z., Potocký Š., Kromka A.. Enhanced Electrochemical Performance of Polyaniline-Boron Doped Diamond Electrode for Supercapacitor Applications. Small Methods. 2025;9:2401523. doi: 10.1002/smtd.202401523. PubMed DOI PMC
Fu Z., Shu X., Zhang Q., Qin D., Han S., Dong Z.. Solar-Driven Induced Photoelectron Remember Effect Involved in Core–Shell NiCo2S4@Ni3V2O8 Composite Electrode with Superior Electrochemical Energy Storage for Asymmetric Supercapacitor. Energy Convers. Manage. 2025;323:119190. doi: 10.1016/j.enconman.2024.119190. DOI
Dong Z., Zhang Q., Shu X., Hu J., Han S.. Photo-Assisted Charging of Heterostructured NiCo2S4@NiCo-LDH Composite Electrode with Remarkable Photoelectronic Memory Effect for High-Performance Asymmetric Supercapacitor. Energy Convers. Manage. 2024;315:118769. doi: 10.1016/j.enconman.2024.118769. DOI
Zhang Q., Deng Y., Hu Z., Liu Y., Yao M., Liu P.. Seaurchin-like Hierarchical NiCo2 O4 @NiMoO4 Core–Shell Nanomaterials for High Performance Supercapacitors. Phys. Chem. Chem. Phys. 2014;16(42):23451–23460. doi: 10.1039/C4CP02928C. PubMed DOI
Kenesi A. G., Ghorbani M., Lashkenari M. S.. High Electrochemical Performance of PANI/CdO Nanocomposite Based on Graphene Oxide as a Hybrid Electrode Materials for Supercapacitor Application. Int. J. Hydrogen Energy. 2022;47(91):38849–38861. doi: 10.1016/j.ijhydene.2022.09.047. DOI
He Y., Chen W., Gao C., Zhou J., Li X., Xie E.. An Overview of Carbon Materials for Flexible Electrochemical Capacitors. Nanoscale. 2013;5(19):8799–8820. doi: 10.1039/c3nr02157b. PubMed DOI
Su Q., Lin C., Xiang M., Wang N., Sun L., Hu W.. Remarkable Electrochemical Performance of Holey MXene/Graphene Hydrogel-Based Supercapacitor Operated at – 60 °C in Sulfuric Acid Aqueous Electrolyte. J. Solid State Electrochem. 2024;28(9):3263–3274. doi: 10.1007/s10008-024-05894-7. DOI
Ahirrao D. J., Pal A. K., Singh V., Jha N.. Nanostructured Porous Polyaniline (PANI) Coated Carbon Cloth (CC) as Electrodes for Flexible Supercapacitor Device. J. Mater. Sci. Technol. 2021;88:168–182. doi: 10.1016/j.jmst.2021.01.075. DOI
Wang W., Li Q., Pan Y., Ye C. R., Li X., Chen Y., Tang Q., Xu J., Zhu Y.. Reduced Graphene Oxide Film Modified by Tannic Acid for High Areal Performance Supercapacitors. J. Solid State Electrochem. 2024;28(11):4077–4086. doi: 10.1007/s10008-024-05946-y. DOI
Zolfaghari Y., Ghorbani M., Lashkenari M. S.. Electrochemical Study on Zeolitic Imidazolate Framework −67 Modified MnFe2O4/CNT Nanocomposite for Supercapacitor Electrode. Electrochim. Acta. 2021;380:138234. doi: 10.1016/j.electacta.2021.138234. DOI
Bibi A., Shakoor A., Raffi M., Hina M., Niaz N. A., Fatima S. A., Qureshi M. N.. Exploring the Potential of Polyaniline-Calcium Titanate (PANI-CaTiO3) Nanocomposites in Supercapacitors: Synthesis and Electrochemical Investigation. J. Energy Storage. 2024;78:110321. doi: 10.1016/j.est.2023.110321. DOI
Zhang W., Zuo H., Cheng Z., Shi Y., Guo Z., Meng N., Thomas A., Liao Y.. Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. Adv. Mater. 2022;34(18):2104952. doi: 10.1002/adma.202104952. PubMed DOI
Itoi H., Hayashi S., Matsufusa H., Ohzawa Y.. Electrochemical Synthesis of Polyaniline in the Micropores of Activated Carbon for High-Performance Electrochemical Capacitors. Chem. Commun. 2017;53(22):3201–3204. doi: 10.1039/C6CC08822H. PubMed DOI
Abdah M. A. A. M., Azman N. H. N., Kulandaivalu S., Sulaiman Y.. Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Mater. Des. 2020;186:108199. doi: 10.1016/j.matdes.2019.108199. DOI
Anwar N., Shakoor A., Ali G., Ahmad H., Niaz N. A., Mahmood A.. Synthesis and Electrochemical Characterization of Polyaniline Doped Cadmium Oxide (PANI-CdO) Nanocomposites for Supercapacitor Applications. J. Energy Storage. 2022;55:105446. doi: 10.1016/j.est.2022.105446. DOI
Chodankar N. R., Pham H. D., Nanjundan A. K., Fernando J. F. S., Jayaramulu K., Golberg D., Han Y., Dubal D. P.. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small. 2020;16(37):2002806. doi: 10.1002/smll.202002806. PubMed DOI
Zhang J., Su L., Ma L., Zhao D., Qin C., Jin Z., Zhao K.. Preparation of Inflorescence-like ACNF/PANI/NiO Composite with Three-Dimension Nanostructure for High Performance Supercapacitors. J. Electroanal. Chem. 2017;790:40–49. doi: 10.1016/j.jelechem.2017.02.047. DOI
Sugimoto R. I., Yoshino K., Hayashi S.. Preparation and Properties of Conducting Heterocyclic Polymer Films by Chemical Method. Jpn. J. Appl. Phys. 1984;23(12):L899–L900. doi: 10.1143/JJAP.23.L899. DOI
Diaz A. F., Kanazawa K. K., Gardini G. P.. Electrochemical Polymerization of Pyrrole. J. Chem. Soc., Chem. Commun. 1979;(14):635–636. doi: 10.1039/c39790000635. DOI
Kuwabara J., Tsuchida W., Guo S., Hu Z., Yasuda T., Kanbara T.. Synthesis of Conjugated Polymers via Direct C-H/C-Cl Coupling Reactions Using a Pd/Cu Binary Catalytic System. Polym. Chem. 2019;10(18):2298–2304. doi: 10.1039/C9PY00232D. DOI
Tusy C., Huang L., Jin J., Xia J.. Synthesis and Investigation of Novel Thiophene Derivatives Containing Heteroatom Linkers for Solid State Polymerization. RSC Adv. 2014;4(16):8011–8014. doi: 10.1039/c3ra45014g. DOI
Bonillo B., Swager T. M.. Chain-Growth Polymerization of 2-Chlorothiophenes Promoted by Lewis Acids. J. Am. Chem. Soc. 2012;134(46):18916–18919. doi: 10.1021/ja308498h. PubMed DOI
Ismail R., Šeděnková I., Svoboda J., Lukešová M., Walterová Z., Tomšík E.. Acid-Assisted Polymerization: The Novel Synthetic Route of Sensing Layers Based on PANI Films and Chelating Agents Protected by Non-Biofouling Layer for Fe2+ or Fe3+ Potentiometric Detection. J. Mater. Chem. B. 2023;11(7):1545–1556. doi: 10.1039/D2TB02450K. PubMed DOI
Aydogan B., Gunbas G. E., Durmus A., Toppare L., Yagci Y.. Highly Conjugated Thiophene Derivatives as New Visible Light Sensitive Photoinitiators for Cationic Polymerization. Macromolecules. 2010;43(1):101–106. doi: 10.1021/ma901858p. DOI
Gvozdenović M. M., Grgur B. N.. Electrochemical Polymerization and Initial Corrosion Properties of Polyaniline-Benzoate Film on Aluminum. Prog. Org. Coat. 2009;65(3):401–404. doi: 10.1016/j.porgcoat.2009.01.004. DOI
Stejskal J., Sapurina I., Trchová M.. Polyaniline Nanostructures and the Role of Aniline Oligomers in Their Formation. Prog. Polym. Sci. 2010;35(12):1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006. DOI
Stejskal J., Sapurina I., Trchová M., Konyushenko E. N.. Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. Macromolecules. 2008;41(10):3530–3536. doi: 10.1021/ma702601q. DOI
Tomšík E., Ivanko I., Svoboda J., Šeděnková I., Zhigunov A., Hromádková J., Pánek J., Lukešová M., Velychkivska N., Janisová L.. Method of Preparation of Soluble PEDOT: Self-Polymerization of EDOT without Oxidant at Room Temperature. Macromol. Chem. Phys. 2020;221(18):2000219. doi: 10.1002/macp.202000219. DOI
Ivanko I., Mahun A., Kobera L., Černochová Z., Pavlova E., Toman P., Pientka Z., Štěpánek P., Tomšík E.. Synergy between the Assembly of Individual PEDOT Chains and Their Interaction with Light. Macromolecules. 2021;54(22):10321–10330. doi: 10.1021/acs.macromol.1c01975. DOI
Ismail R., Šeděnková I., Černochová Z., Romanenko I., Pop-Georgievski O., Hrubý M., Tomšík E.. Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors. 2022;12(7):446. doi: 10.3390/bios12070446. PubMed DOI PMC
Sun B., Wang D., Jiang Y., Wang R., Lyu L., Diao G., Zhang W., Pang H.. Cyclodextrin Metal–Organic Framework Functionalized Carbon Materials with Optimized Interface Electronics and Selective Supramolecular Channels for High-Performance Lithium–Sulfur Batteries. Adv. Mater. 2024;36(52):2415633. doi: 10.1002/adma.202415633. PubMed DOI
Zhu S., Guan C., Wu Y., Ni J., Han G.. Upgraded Structure and Application of Coal-Based Graphitic Carbons Through Flash Joule Heating. Adv. Funct. Mater. 2024;34(39):2403961. doi: 10.1002/adfm.202403961. DOI
Huang J., Zhu S., Guan C., Huang Z., Zhang J., Ni J., Han G.. Molten-SaltSynthesisofAnthracite-Based Porous Carbon for Microscale Supercapacitors and Strain Sensors. Adv. Mater. Technol. 2023;9(21):2301523. doi: 10.1002/admt.202301523. DOI
Van der Linden W. E., Dieker J. W.. Glassy Carbon as Electrode Material in Electro- Analytical Chemistry. Anal. Chim. Acta. 1980;119(1):1–24. doi: 10.1016/S0003-2670(00)00025-8. DOI
Dekanski A., Stevanović J., Stevanović R., Nikolić B. Ž., Jovanović V. M.. Glassy Carbon Electrodes: I. Characterization and Electrochemical Activation. Carbon. 2001;39(8):1195–1205. doi: 10.1016/S0008-6223(00)00228-1. DOI
Abdel-Aziz A. M., Hassan H. H., Badr I. H. A.. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS Omega. 2022;7(38):34127–34135. doi: 10.1021/acsomega.2c03427. PubMed DOI PMC
Tuinstra F., Koenig J. L.. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53(3):1126–1130. doi: 10.1063/1.1674108. DOI
Pimenta M. A., Dresselhaus G., Dresselhaus M. S., Cançado L. G., Jorio A., Saito R.. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007;9(11):1276–1290. doi: 10.1039/B613962K. PubMed DOI
Thomsen C., Reich S.. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000;85(24):5214. doi: 10.1103/PhysRevLett.85.5214. PubMed DOI
Jurkiewicz K., Pawlyta M., Zygadło D., Chrobak D., Duber S., Wrzalik R., Ratuszna A., Burian A.. Evolution of Glassy Carbon under Heat Treatment: Correlation Structure–Mechanical Properties. J. Mater. Sci. 2018;53(5):3509–3523. doi: 10.1007/s10853-017-1753-7. DOI
Shinzawa R., Otsuka A., Nakamura A.. Growth of Glassy Carbon Thin Films and Its pH Sensor Applications. SN Appl. Sci. 2019;1(2):171. doi: 10.1007/s42452-019-0181-5. DOI
Kohut O., Dragounová K., Ukraintsev E., Szabó O., Kromka A., Tomšík E.. Non-Conducting Polyaniline Nanofibrils and Their Physico-Chemical Behavior. Vacuum. 2020;171:108955. doi: 10.1016/j.vacuum.2019.108955. DOI
Morávková Z., Bober P.. Writing in a Polyaniline Film with Laser Beam and Stability of the Record: A Raman Spectroscopy Study. Int. J. Polym. Sci. 2018;2018:1797216. doi: 10.1155/2018/1797216. DOI
Wang W., Yang F., Chen C., Zhang L., Qin Y., Knez M.. Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Adv. Mater. Interfaces. 2017;4(4):1600806. doi: 10.1002/admi.201600806. DOI
Morávková Z., Trchová M., Dybal J., Bláha M., Stejskal J.. The Interaction of Thin Polyaniline Films with Various H-phosphonates: Spectroscopy and Quantum Chemical Calculations. J. Appl. Polym. Sci. 2018;135(38):46728. doi: 10.1002/app.46728. DOI
Kumar A., Kumar A., Mudila H., Awasthi K., Kumar V.. Synthesis and Thermal Analysis of Polyaniline (PANI) J. Phys.: Conf. Ser. 2020;1531(1):012108. doi: 10.1088/1742-6596/1531/1/012108. DOI
Kalakonda P., Kalakonda P. B., Banne S.. Studies of Electrical, Thermal, and Mechanical Properties of Single-Walled Carbon Nanotube and Polyaniline of Nanoporous Nanocomposites. Nanomater. Nanotechnol. 2021;11:184798042110011. doi: 10.1177/18479804211001140. DOI
Chen Z., Jiang Y., Xin B., Jiang S., Liu Y., Lin L.. Electrochemical Analysis of Conducting Reduced Graphene Oxide/Polyaniline/Polyvinyl Alcohol Nanofibers as Supercapacitor Electrodes. J. Mater. Sci.: Mater. Electron. 2020;31(8):5958–5965. doi: 10.1007/s10854-020-03204-1. DOI