Disrupting SARS-CoV-2 Spike Protein Activity: A Virtual Screening and Binding Assay Study
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FBR_OC52_53
EEA Grants/Norway
2020.10230.BD
Fundação para a Ciência e Tecnologia
PubMed
39796007
PubMed Central
PMC11720127
DOI
10.3390/ijms26010151
PII: ijms26010151
Knihovny.cz E-resources
- Keywords
- SARS-CoV-2, in vitro assays, spike glycoprotein, virtual screening,
- MeSH
- Angiotensin-Converting Enzyme 2 metabolism chemistry MeSH
- Antiviral Agents * pharmacology chemistry MeSH
- COVID-19 virology metabolism MeSH
- COVID-19 Drug Treatment MeSH
- Spike Glycoprotein, Coronavirus * metabolism chemistry antagonists & inhibitors MeSH
- Virus Internalization drug effects MeSH
- Linoleic Acid metabolism chemistry MeSH
- Humans MeSH
- Fatty Acid-Binding Proteins metabolism chemistry MeSH
- SARS-CoV-2 * metabolism drug effects MeSH
- Molecular Docking Simulation MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ACE2 protein, human MeSH Browser
- Angiotensin-Converting Enzyme 2 MeSH
- Antiviral Agents * MeSH
- Spike Glycoprotein, Coronavirus * MeSH
- Linoleic Acid MeSH
- Fatty Acid-Binding Proteins MeSH
- spike protein, SARS-CoV-2 MeSH Browser
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that emerged in late 2019 and rapidly spread worldwide, causing the COVID-19 pandemic. The spike glycoprotein (S protein) plays a crucial role in viral target recognition and entry by interacting with angiotensin, converting enzyme 2 (ACE2), the functional receptor for the virus, via its receptor binding domain (RBD). The RBD availability for this interaction can be influenced by external factors, such as fatty acids. Linoleic acid (LA), a free fatty acid, has been shown to bind the S protein, modulating the viral infection by reducing initial target recognition. LA interacts with the fatty acid binding pocket (FABP), a potential drug target against SARS-CoV-2. In this study, we aimed to exploit the FABP as a drug target by performing a docking-based virtual screening with a library of commercially available, drug-like compounds. The virtual hits identified were then assessed in in vitro assays for the inhibition of the virus-host interaction and cytotoxicity. Binding assays targeting the spike-ACE2 interaction identified multiple compounds with inhibitory activity and low cytotoxicity.
Abel Salazar Institute of Biomedical Sciences University of Porto 4050 313 Porto Portugal
Animal Science Study Centre 4051 401 Porto Portugal
Associate Laboratory for Animal and Veterinary Science 1300 477 Lisboa Portugal
Department of Chemistry Faculty of Science and Engineering Swansea University Swansea SA2 8PP UK
Epidemiology Research Unit Institute of Public Health University of Porto 4050 091 Porto Portugal
See more in PubMed
Coronavirus Disease (COVID-19) Dashboard. [(accessed on 4 September 2021)]. Available online: https://covid19.who.int/
Naqvi A.A.T., Fatima K., Mohammad T., Fatima U., Singh I.K., Singh A., Atif S.M., Hariprasad G., Hasan G.M., Hassan I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165878. doi: 10.1016/j.bbadis.2020.165878. PubMed DOI PMC
Wang M.-Y., Zhao R., Gao L.-J., Gao X.-F., Wang D.-P., Cao J.-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020;10:587269. doi: 10.3389/fcimb.2020.587269. PubMed DOI PMC
Wrobel A.G., Benton D.J., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 2020;27:763–767. doi: 10.1038/s41594-020-0468-7. PubMed DOI PMC
Denaro M., Ferro E., Barrano G., Meli S., Busacca M., Corallo D., Capici A., Zisa A., Cucuzza L., Gradante S., et al. Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int. J. Mol. Sci. 2023;24:4742. doi: 10.3390/ijms24054742. PubMed DOI PMC
Klimek L., Agache I., Cooke E., Jutel M., Akdis C.A., O’Hehir R. COVID-19 vaccines-The way forward. Allergy. 2022;77:15–16. doi: 10.1111/all.14995. PubMed DOI PMC
Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e6. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC
Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588:327–330. doi: 10.1038/s41586-020-2772-0. PubMed DOI PMC
Almehdi A.M., Khoder G., Alchakee A.S., Alsayyid A.T., Sarg N.H., Soliman S.S. SARS-CoV-2 spike protein: Pathogenesis, vaccines, and potential therapies. Infection. 2021;49:855–876. doi: 10.1007/s15010-021-01677-8. PubMed DOI PMC
Queirós-Reis L., Gomes da Silva P., Gonçalves J., Brancale A., Bassetto M., Mesquita J.R. SARS-CoV-2 Virus−Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Int. J. Mol. Sci. 2021;22:10836. doi: 10.3390/ijms221910836. PubMed DOI PMC
Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Peacock S.J., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC
Zhou T., Tsybovsky Y., Gorman J., Rapp M., Cerutti G., Chuang G.Y., Katsamba P.S., Sampson J.M., Schön A., Bimela J., et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe. 2020;28:867–879.e5. doi: 10.1016/j.chom.2020.11.004. PubMed DOI PMC
Brash A.R. Arachidonic acid as a bioactive molecule. J. Clin. Investig. 2001;107:1339–1345. doi: 10.1172/JCI13210. PubMed DOI PMC
Staufer O., Gupta K., Hernandez Bücher J.E., Kohler F., Sigl C., Singh G., Vasileiou K., Yagüe Relimpio A., Macher M., Fabritz S., et al. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat. Commun. 2022;13:868. doi: 10.1038/s41467-022-28446-x. PubMed DOI PMC
Toelzer C., Gupta K., Yadav S.K., Borucu U., Davidson A.D., Kavanagh Williamson M., Shoemark D.K., Garzoni F., Staufer O., Milligan R., et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science. 2020;370:725–730. doi: 10.1126/science.abd3255. PubMed DOI PMC
Queirós-Reis L., Mesquita J.R., Brancale A., Bassetto M. Exploring the Fatty Acid Binding Pocket in the SARS-CoV-2 Spike Protein—Confirmed and Potential Ligands. J. Chem. Inf. Model. 2023;63:7282–7298. doi: 10.1021/acs.jcim.3c00803. PubMed DOI
Toelzer C., Gupta K., Yadav S.K., Hodgson L., Williamson M.K., Buzas D., Borucu U., Powers K., Stenner R., Vasileiou K., et al. The free fatty acid–binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. Sci. Adv. 2022;8:eadc9179. doi: 10.1126/sciadv.adc9179. PubMed DOI PMC
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004;47:1739–1749. PubMed
Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Korb O., Stützle T., Exner T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI
OpenEye, OEDOCKING 4.3.1.0. [(accessed on 12 September 2024)]. Available online: http://www.eyesopen.com.
Pasqualetto G., Schepelmann M., Varricchio C., Pileggi E., Khogali C., Morgan S.R., Boostrom I., Rozanowska M., Brancale A., Ferla S., et al. Computational Studies towards the Identification of Novel Rhodopsin-Binding Compounds as Chemical Chaperones for Misfolded Opsins. Molecules. 2020;25:4904. doi: 10.3390/molecules25214904. PubMed DOI PMC
Goc A., Niedzwiecki A., Rath M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci. Rep. 2021;11:5207. doi: 10.1038/s41598-021-84850-1. PubMed DOI PMC
Fonnesu R., Thunuguntla V.B.S.C., Veeramachaneni G.K., Bondili J.S., La Rocca V., Filipponi C., Spezia P.G., Sidoti M., Plicanti E., Quaranta P., et al. Palmitoylethanolamide (PEA) Inhibits SARS-CoV-2 Entry by Interacting with S Protein and ACE-2 Receptor. Viruses. 2022;14:1080. doi: 10.3390/v14051080. PubMed DOI PMC
Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.
Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC
Lall N., Henley-Smith C.J., De Canha M.N., Oosthuizen C.B., Berrington D. Viability Reagent, PrestoBlue, in Comparison with Other Available Reagents, Utilized in Cytotoxicity and Antimicrobial Assays. Int. J. Microbiol. 2013;2013:420601. doi: 10.1155/2013/420601. PubMed DOI PMC
Gironi B., Kahveci Z., McGill B., Lechner B.-D., Pagliara S., Metz J., Morresi A., Palombo F., Sassi P., Petrov P.G. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys. J. 2020;119:274–286. doi: 10.1016/j.bpj.2020.05.037. PubMed DOI PMC
SPECS Library. [(accessed on 21 November 2024)]. Available online: https://www.specs.net/
SARS-CoV-2 Spike Trimer (S1 + S2):ACE2 Inhibitor Screening Colorimetric Assay Kit. [(accessed on 25 June 2024)]. Available online: https://bpsbioscience.com/sars-cov-2-spike-trimer-s1-s2-mutant-ace2-inhibitor-screening-colorimetric-assay-kit-79999.
Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. PubMed DOI PMC