• This record comes from PubMed

Disrupting SARS-CoV-2 Spike Protein Activity: A Virtual Screening and Binding Assay Study

. 2024 Dec 27 ; 26 (1) : . [epub] 20241227

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FBR_OC52_53 EEA Grants/Norway
2020.10230.BD Fundação para a Ciência e Tecnologia

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that emerged in late 2019 and rapidly spread worldwide, causing the COVID-19 pandemic. The spike glycoprotein (S protein) plays a crucial role in viral target recognition and entry by interacting with angiotensin, converting enzyme 2 (ACE2), the functional receptor for the virus, via its receptor binding domain (RBD). The RBD availability for this interaction can be influenced by external factors, such as fatty acids. Linoleic acid (LA), a free fatty acid, has been shown to bind the S protein, modulating the viral infection by reducing initial target recognition. LA interacts with the fatty acid binding pocket (FABP), a potential drug target against SARS-CoV-2. In this study, we aimed to exploit the FABP as a drug target by performing a docking-based virtual screening with a library of commercially available, drug-like compounds. The virtual hits identified were then assessed in in vitro assays for the inhibition of the virus-host interaction and cytotoxicity. Binding assays targeting the spike-ACE2 interaction identified multiple compounds with inhibitory activity and low cytotoxicity.

See more in PubMed

Coronavirus Disease (COVID-19) Dashboard. [(accessed on 4 September 2021)]. Available online: https://covid19.who.int/

Naqvi A.A.T., Fatima K., Mohammad T., Fatima U., Singh I.K., Singh A., Atif S.M., Hariprasad G., Hasan G.M., Hassan I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165878. doi: 10.1016/j.bbadis.2020.165878. PubMed DOI PMC

Wang M.-Y., Zhao R., Gao L.-J., Gao X.-F., Wang D.-P., Cao J.-M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020;10:587269. doi: 10.3389/fcimb.2020.587269. PubMed DOI PMC

Wrobel A.G., Benton D.J., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 2020;27:763–767. doi: 10.1038/s41594-020-0468-7. PubMed DOI PMC

Denaro M., Ferro E., Barrano G., Meli S., Busacca M., Corallo D., Capici A., Zisa A., Cucuzza L., Gradante S., et al. Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int. J. Mol. Sci. 2023;24:4742. doi: 10.3390/ijms24054742. PubMed DOI PMC

Klimek L., Agache I., Cooke E., Jutel M., Akdis C.A., O’Hehir R. COVID-19 vaccines-The way forward. Allergy. 2022;77:15–16. doi: 10.1111/all.14995. PubMed DOI PMC

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e6. doi: 10.1016/j.cell.2020.02.058. PubMed DOI PMC

Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588:327–330. doi: 10.1038/s41586-020-2772-0. PubMed DOI PMC

Almehdi A.M., Khoder G., Alchakee A.S., Alsayyid A.T., Sarg N.H., Soliman S.S. SARS-CoV-2 spike protein: Pathogenesis, vaccines, and potential therapies. Infection. 2021;49:855–876. doi: 10.1007/s15010-021-01677-8. PubMed DOI PMC

Queirós-Reis L., Gomes da Silva P., Gonçalves J., Brancale A., Bassetto M., Mesquita J.R. SARS-CoV-2 Virus−Host Interaction: Currently Available Structures and Implications of Variant Emergence on Infectivity and Immune Response. Int. J. Mol. Sci. 2021;22:10836. doi: 10.3390/ijms221910836. PubMed DOI PMC

Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Peacock S.J., et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC

Zhou T., Tsybovsky Y., Gorman J., Rapp M., Cerutti G., Chuang G.Y., Katsamba P.S., Sampson J.M., Schön A., Bimela J., et al. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host Microbe. 2020;28:867–879.e5. doi: 10.1016/j.chom.2020.11.004. PubMed DOI PMC

Brash A.R. Arachidonic acid as a bioactive molecule. J. Clin. Investig. 2001;107:1339–1345. doi: 10.1172/JCI13210. PubMed DOI PMC

Staufer O., Gupta K., Hernandez Bücher J.E., Kohler F., Sigl C., Singh G., Vasileiou K., Yagüe Relimpio A., Macher M., Fabritz S., et al. Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein. Nat. Commun. 2022;13:868. doi: 10.1038/s41467-022-28446-x. PubMed DOI PMC

Toelzer C., Gupta K., Yadav S.K., Borucu U., Davidson A.D., Kavanagh Williamson M., Shoemark D.K., Garzoni F., Staufer O., Milligan R., et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science. 2020;370:725–730. doi: 10.1126/science.abd3255. PubMed DOI PMC

Queirós-Reis L., Mesquita J.R., Brancale A., Bassetto M. Exploring the Fatty Acid Binding Pocket in the SARS-CoV-2 Spike Protein—Confirmed and Potential Ligands. J. Chem. Inf. Model. 2023;63:7282–7298. doi: 10.1021/acs.jcim.3c00803. PubMed DOI

Toelzer C., Gupta K., Yadav S.K., Hodgson L., Williamson M.K., Buzas D., Borucu U., Powers K., Stenner R., Vasileiou K., et al. The free fatty acid–binding pocket is a conserved hallmark in pathogenic β-coronavirus spike proteins from SARS-CoV to Omicron. Sci. Adv. 2022;8:eadc9179. doi: 10.1126/sciadv.adc9179. PubMed DOI PMC

Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004;47:1739–1749. PubMed

Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI

Korb O., Stützle T., Exner T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009;49:84–96. doi: 10.1021/ci800298z. PubMed DOI

OpenEye, OEDOCKING 4.3.1.0. [(accessed on 12 September 2024)]. Available online: http://www.eyesopen.com.

Pasqualetto G., Schepelmann M., Varricchio C., Pileggi E., Khogali C., Morgan S.R., Boostrom I., Rozanowska M., Brancale A., Ferla S., et al. Computational Studies towards the Identification of Novel Rhodopsin-Binding Compounds as Chemical Chaperones for Misfolded Opsins. Molecules. 2020;25:4904. doi: 10.3390/molecules25214904. PubMed DOI PMC

Goc A., Niedzwiecki A., Rath M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci. Rep. 2021;11:5207. doi: 10.1038/s41598-021-84850-1. PubMed DOI PMC

Fonnesu R., Thunuguntla V.B.S.C., Veeramachaneni G.K., Bondili J.S., La Rocca V., Filipponi C., Spezia P.G., Sidoti M., Plicanti E., Quaranta P., et al. Palmitoylethanolamide (PEA) Inhibits SARS-CoV-2 Entry by Interacting with S Protein and ACE-2 Receptor. Viruses. 2022;14:1080. doi: 10.3390/v14051080. PubMed DOI PMC

Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.

Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Lall N., Henley-Smith C.J., De Canha M.N., Oosthuizen C.B., Berrington D. Viability Reagent, PrestoBlue, in Comparison with Other Available Reagents, Utilized in Cytotoxicity and Antimicrobial Assays. Int. J. Microbiol. 2013;2013:420601. doi: 10.1155/2013/420601. PubMed DOI PMC

Gironi B., Kahveci Z., McGill B., Lechner B.-D., Pagliara S., Metz J., Morresi A., Palombo F., Sassi P., Petrov P.G. Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys. J. 2020;119:274–286. doi: 10.1016/j.bpj.2020.05.037. PubMed DOI PMC

SPECS Library. [(accessed on 21 November 2024)]. Available online: https://www.specs.net/

SARS-CoV-2 Spike Trimer (S1 + S2):ACE2 Inhibitor Screening Colorimetric Assay Kit. [(accessed on 25 June 2024)]. Available online: https://bpsbioscience.com/sars-cov-2-spike-trimer-s1-s2-mutant-ace2-inhibitor-screening-colorimetric-assay-kit-79999.

Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...