From 2D kaolinite to 3D amorphous cement

. 2025 Jan 11 ; 15 (1) : 1669. [epub] 20250111

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39799134

Grantová podpora
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
Centre for Advanced 2D Materials (CA2DM) National Research Foundation Singapore
EDUNC-33-18-279-V12 Ministry of Education - Singapore
EDUNC-33-18-279-V12 Ministry of Education - Singapore

Odkazy

PubMed 39799134
PubMed Central PMC11724968
DOI 10.1038/s41598-024-81882-1
PII: 10.1038/s41598-024-81882-1
Knihovny.cz E-zdroje

Kaolinite is a single 2D layer of kaolin or metakaolin (MK), common clays that can be characterized as layered 3D materials. We show that because of its chemical composition, kaolinite can be converted into an amorphous 3D material by chemical means. This dimensional transformation is possible due to the large surface to volume ratio and chemical reactivity of kaolinite. We investigate the formation and influence of quasi- or nanocrystalline phases in MK-based alkali-activated materials (AAM) that are related to the Si/Al ratio. We analyze the formation of an AAM from a MK precursor, which is a 3D bonded network that preserves the layered structure at the nanometer scale. We also exfoliate the remaining layered phase to examine the effects of the alkali-activation in the final sheet structures embedded within the amorphous network. The final material can be used as a cement with no carbon dioxide produced by the transformation reaction.

Zobrazit více v PubMed

Courland, R. Concrete Planet: The Strange and Fascinating Story of the World’s Most Common Man-Made Material. (Prometheus, 2022).

Kriven, W. M. et al. Why geopolymers and alkali‐activated materials are key components of a sustainable world: A perspective contribution. Journal of the American Ceramic Societyn/a (2024).

IEA. Technology Roadmap - Low-Carbon Transition in the Cement Industry. (2018).

Beneš, H. et al. Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Adv.6, 6008–6015 (2016).

Liu, T. et al. Preparation of organic-free two-dimensional kaolinite nanosheets by in situ interlayer fenton reaction. ChemistrySelect4, 11604–11608 (2019).

Donato, K. Z. et al. Graphene oxide classification and standardization. Sci Rep13, 6064 (2023). PubMed PMC

Zhu, Y., Ji, H., Cheng, H.-M. & Ruoff, R. S. Mass production and industrial applications of graphene materials. Natl Sci Rev5, 90–101 (2018).

Owuor, P. S. et al. Roadblocks faced by graphene in replacing graphite in large-scale applications. Oxford Open Materials Science1, itab004 (2020).

Björk, J., Zhou, J., Persson, P. O. Å. & Rosen, J. Two-dimensional materials by large-scale computations and chemical exfoliation of layered solids. Science1979(383), 1210–1215 (2024). PubMed

Islam, M. A. et al. Exfoliation mechanisms of 2D materials and their applications. Appl Phys Rev9, 41301 (2022).

Kaur, H. & Coleman, J. N. Liquid-phase exfoliation of nonlayered non-Van-Der-Waals crystals into nanoplatelets. Advanced Materials34, 2202164 (2022). PubMed

Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat Nanotechnol13, 602–609 (2018). PubMed

Seymour, L. M. et al. Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Sci Adv9, eadd1602 (2023). PubMed PMC

Luukkonen, T. Alkali-activated materials in environmental technology: introduction. in Alkali-Activated Materials in Environmental Technology Applications 1–12 (Elsevier, 2022).

Handbook of Clay Minerals. (CALLISTO REFERENCE, 2015).

Bergaya, F. & Lagaly, G. General Introduction. in Developments in Clay Science vol. 5 1–19 (Elsevier, 2013).

Brigatti, M. F., Galán, E. & Theng, B. K. G. Structure and Mineralogy of Clay Minerals. in Developments in Clay Science vol. 5 21–81 (Elsevier, 2013).

Leonelli, C. & Palomo, A. Chemistry and materials science of alkali-activated materials. in Alkali-Activated Materials in Environmental Technology Applications 13–40 (Elsevier, 2022).

Liu, T., Zhou, H., Graham, N., Yu, W. & Sun, K. 2D kaolin ultrafiltration membrane with ultrahigh flux for water purification. Water Res156, 425–433 (2019). PubMed

Zhang, X. et al. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method. Fuel191, 198–203 (2017).

Zhang, Q. et al. Chemically modified kaolinite nanolayers for the removal of organic pollutants. Appl Clay Sci157, 283–290 (2018).

Zhang, Y. et al. Intercalated 2D nanoclay for emerging drug delivery in cancer therapy. Nano Res10, 2633–2643 (2017).

Kauling, A. P. et al. The worldwide graphene flake production. Advanced Materials30, 1803784 (2018). PubMed

Paton, K. R. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater13, 624–630 (2014). PubMed

Nizri, G., Makarsky, A., Magdassi, S. & Talmon, Y. Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants. Langmuir25, 1980–1985 (2009). PubMed

Detellier, C. & Letaief, S. Kaolinite–Polymer Nanocomposites. in Developments in Clay Science vol. 5 707–719 (Elsevier, 2013).

van Deventer, J. S. J., Provis, J. L., Duxson, P. & Lukey, G. C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J Hazard Mater139, 506–513 (2007). PubMed

Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven, W. M. & van Deventer, J. S. J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A Physicochem Eng Asp292, 8–20 (2007).

Ma, G., Bai, C., Wang, M. & He, P. Effects of Si/Al Ratios on the Bulk-Type Zeolite Formation Using Synthetic Metakaolin-Based Geopolymer with Designated Composition. Crystals (Basel)11, 1310 (2021).

Wan, Q. et al. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem Concr Compos79, 45–52 (2017).

Bish, D. L. Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays Clay Miner37, 289–296 (1989).

Sperinck, S., Raiteri, P., Marks, N. & Wright, K. Dehydroxylation of kaolinite to metakaolin—A molecular dynamics study. J. Mater. Chem.21, 2118–2125 (2011).

Wang, W. et al. Measurement of the cleavage energy of graphite. Nat Commun6, 7853 (2015). PubMed PMC

Meral, C., Benmore, C. J. & Monteiro, P. J. M. The study of disorder and nanocrystallinity in C-S–H, supplementary cementitious materials and geopolymers using pair distribution function analysis. Cem Concr Res41, 696–710 (2011).

Cutini, M., Maschio, L. & Ugliengo, P. Exfoliation energy of layered materials by DFT-D: Beware of dispersion!. J Chem Theory Comput16, 5244–5252 (2020). PubMed PMC

Bish, D. L. & Johnston, C. T. Rietveld refinement and fourier-transform infrared spectroscopic study of the dickite structure at low temperature. Clays Clay Miner41, 297–304 (1993).

Lee, S., Kim, Y. J. & Moon, H.-S. Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. Journal of the American Ceramic Society82, 2841–2848 (1999).

Chakraborty, A. K. Phase Transformation of Kaolinite Clay. (Springer India, New Delhi, 2014).

Kovářík, T. et al. Structural and physical changes of re-calcined metakaolin regarding its reactivity. Constr Build Mater80, 98–104 (2015).

Moya, J. S., Cabal, B., Lopez-Esteban, S., Bartolomé, J. F. & Sanz, J. Significance of the formation of pentahedral aluminum in the reactivity of calcined kaolin/metakaolin and its applications. Ceram Int50, 1329–1340 (2024).

Davidovits, J. Geopolymers Based on Natural and Synthetic Metakaolin a Critical Review. in Proceedings of the 41st International Conference on Advanced Ceramics and Composites 201–214 (John Wiley & Sons, Ltd, 2018). 10.1002/9781119474746.ch19.

N’Guessan, N. E. et al. Role of cations on the dissolution mechanism of kaolinite in high alkaline media. Appl Clay Sci205, 106037 (2021).

Caballero, L. R., Paiva, M. D. D. M., Fairbairn, E. D. M. R. & Toledo Filho, R. D. Thermal, mechanical and microstructural analysis of metakaolin based geopolymers. Materials Research22, e20180716 (2019).

Scarlett, N. V. Y. & Madsen, I. C. Quantification of phases with partial or no known crystal structures. Powder Diffr21, 278–284 (2006).

Hong, F. et al. Study on the mechanical properties, gelling products and alkalization process of alkali-activated metakaolin: From experiment to molecular dynamics simulation. Journal of Building Engineering79, 107705 (2023).

Hou, D. et al. Molecular insights into the reaction process of alkali-activated metakaolin by sodium hydroxide. Langmuir38, 11337–11345 (2022). PubMed

Garg, N. & Skibsted, J. Dissolution kinetics of calcined kaolinite and montmorillonite in alkaline conditions: Evidence for reactive Al(V) sites. Journal of the American Ceramic Society102, 7720–7734 (2019).

Scherb, S., Köberl, M., Beuntner, N., Thienel, K.-C. & Neubauer, J. Reactivity of metakaolin in alkaline environment: correlation of results from dissolution experiments with XRD quantifications. Materials13, 2214 (2020). PubMed PMC

Sarnthein, J., Pasquarello, A. & Car, R. Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study. Phys Rev Lett74, 4682–4685 (1995). PubMed

Psofogiannakis, G. M., McCleerey, J. F., Jaramillo, E. & van Duin, A. C. T. ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 Zeolite and the formation of Cu dimers. The Journal of Physical Chemistry C119, 6678–6686 (2015).

High-resolution neutron powder diffraction. Line, C. M. B., Dove, M. T., Knight, K. S. & Winkler, B. The low-temperature behaviour of analcime. 1. Mineral Mag60, 499–507 (1996).

Davidovits, J. GEOPOLYMERS: Man-made rock geosynthesis and the resulting development of very early high strength cement. Journal of Materials Education16, 91–139 (1994).

Zhao, H., Yang, Z. & Guo, L. Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Mater10, 1–22 (2018).

Godoy, A. P. et al. Ultrasound exfoliation of graphite in biphasic liquid systems containing ionic liquids: A study on the conditions for obtaining large few-layers graphene. Ultrason Sonochem55, 279–288 (2019). PubMed

Chen, S., Wu, C. & Yan, D. Binder-scale creep behavior of metakaolin-based geopolymer. Cem Concr Res124, 105810 (2019).

Toby, B. H. & Von Dreele, R. B. GSAS-II : The genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr46, 544–549 (2013).

Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D. & Lwin, T. Outcomes of the international union of crystallography commission on powder diffraction round robin on quantitative phase analysis: Samples 1 a to 1 h. J Appl Crystallogr34, 409–426 (2001).

Soler, J. M. et al. The SIESTA method for ab initio order- N materials simulation. Journal of Physics: Condensed Matter14, 2745–2779 (2002).

Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B43, 1993–2006 (1991). PubMed

Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B46, 6671–6687 (1992). PubMed

Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys Rev B82, 081101 (2010).

Thompson, A. P. et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun271, 108171 (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...