Prenatal origin of childhood AML occurs less frequently than in childhood ALL
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16630339
PubMed Central
PMC1463004
DOI
10.1186/1471-2407-6-100
PII: 1471-2407-6-100
Knihovny.cz E-zdroje
- MeSH
- akutní lymfatická leukemie krev embryologie epidemiologie genetika MeSH
- buněčné klony chemie MeSH
- buňky kostní dřeně chemie MeSH
- dítě MeSH
- DNA nádorová krev MeSH
- duplikace genu MeSH
- fetální krev chemie MeSH
- fúzní onkogenní proteiny krev genetika MeSH
- genová přestavba B-lymfocytů * MeSH
- genová přestavba T-lymfocytů * MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé MeSH
- myeloidní leukemie krev embryologie epidemiologie genetika MeSH
- nádorové biomarkery krev MeSH
- nádorové proteiny krev genetika MeSH
- novorozenec MeSH
- novorozenecký screening MeSH
- polymerázová řetězová reakce MeSH
- předškolní dítě MeSH
- protein PEBP2A2 krev genetika MeSH
- protein RUNX1T1 MeSH
- protoonkogenní protein MLL krev genetika MeSH
- tandemové repetitivní sekvence MeSH
- tyrosinkinasa 3 podobná fms krev genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AML1-ETO fusion protein, human MeSH Prohlížeč
- CBFbeta-MYH11 fusion protein MeSH Prohlížeč
- DNA nádorová MeSH
- FLT3 protein, human MeSH Prohlížeč
- fúzní onkogenní proteiny MeSH
- MLL-AF10 fusion protein, human MeSH Prohlížeč
- MLL-AF6 fusion protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- nádorové proteiny MeSH
- promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein MeSH Prohlížeč
- protein PEBP2A2 MeSH
- protein RUNX1T1 MeSH
- protoonkogenní protein MLL MeSH
- TEL-AML1 fusion protein MeSH Prohlížeč
- tyrosinkinasa 3 podobná fms MeSH
BACKGROUND: While there is enough convincing evidence in childhood acute lymphoblastic leukemia (ALL), the data on the pre-natal origin in childhood acute myeloid leukemia (AML) are less comprehensive. Our study aimed to screen Guthrie cards (neonatal blood spots) of non-infant childhood AML and ALL patients for the presence of their respective leukemic markers. METHODS: We analysed Guthrie cards of 12 ALL patients aged 2-6 years using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements (n = 15) and/or intronic breakpoints of TEL/AML1 fusion gene (n = 3). In AML patients (n = 13, age 1-14 years) PML/RARalpha (n = 4), CBFbeta/MYH11 (n = 3), AML1/ETO (n = 2), MLL/AF6 (n = 1), MLL/AF9 (n = 1) and MLL/AF10 (n = 1) fusion genes and/or internal tandem duplication of FLT3 gene (FLT3/ITD) (n = 2) were used as clonotypic markers. Assay sensitivity determined using serial dilutions of patient DNA into the DNA of a healthy donor allowed us to detect the pre-leukemic clone in Guthrie card providing 1-3 positive cells were present in the neonatal blood spot. RESULTS: In 3 patients with ALL (25%) we reproducibly detected their leukemic markers (Ig/TCR n = 2; TEL/AML1 n = 1) in the Guthrie card. We did not find patient-specific molecular markers in any patient with AML. CONCLUSION: In the largest cohort examined so far we used identical approach for the backtracking of non-infant childhood ALL and AML. Our data suggest that either the prenatal origin of AML is less frequent or the load of pre-leukemic cells is significantly lower at birth in AML compared to ALL cases.
Zobrazit více v PubMed
Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102:2321–2333. doi: 10.1182/blood-2002-12-3817. PubMed DOI
Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, Greaves MF. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A. 1997;94:13950–13954. doi: 10.1073/pnas.94.25.13950. PubMed DOI PMC
Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G, Saha V, Biondi A, Greaves MF. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354:1499–1503. doi: 10.1016/S0140-6736(99)09403-9. PubMed DOI
Maia AT, Koechling J, Corbett R, Metzler M, Wiemels JL, Greaves M. Protracted postnatal natural histories in childhood leukemia. Genes Chromosomes Cancer. 2004;39:335–340. doi: 10.1002/gcc.20003. PubMed DOI
McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Guo W, Loh ML, Smith MT. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer. 2003;37:36–43. doi: 10.1002/gcc.10199. PubMed DOI
Hjalgrim LL, Madsen HO, Melbye M, Jorgensen P, Christiansen M, Andersen MT, Pallisgaard N, Hokland P, Clausen N, Ryder LP, Schmiegelow K, Hjalgrim H. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer. 2002;87:994–999. doi: 10.1038/sj.bjc.6600601. PubMed DOI PMC
Ford AM, Pombo-de-Oliveira MS, McCarthy KP, MacLean JM, Carrico KC, Vincent RF, Greaves M. Monoclonal origin of concordant T-cell malignancy in identical twins. Blood. 1997;89:281–285. PubMed
Maia AT, van der Velden VH, Harrison CJ, Szczepanski T, Williams MD, Griffiths MJ, van Dongen JJ, Greaves MF. Prenatal origin of hyperdiploid acute lymphoblastic leukemia in identical twins. Leukemia. 2003;17:2202–2206. doi: 10.1038/sj.leu.2403101. PubMed DOI
Zuna J, Muzikova K, Ford AM, Maia AT, Krejci O, Tousovska K, Oravkinova I, Greaves M, Trka J. Pre-natal, clonal origin of acute lymphoblastic leukaemia in triplets. Leuk Lymphoma. 2003;44:2099–2102. doi: 10.1080/1042819031000123393. PubMed DOI
Fasching K, Panzer S, Haas OA, Borkhardt A, Marschalek R, Griesinger F, Panzer-Grumayer ER. Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia. Blood. 2001;98:2272–2274. doi: 10.1182/blood.V98.7.2272. PubMed DOI
Yagi T, Hibi S, Tabata Y, Kuriyama K, Teramura T, Hashida T, Shimizu Y, Takimoto T, Todo S, Sawada T, Imashuku S. Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood. 2000;96:264–268. PubMed
Taub JW, Konrad MA, Ge Y, Naber JM, Scott JS, Matherly LH, Ravindranath Y. High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood. 2002;99:2992–2996. doi: 10.1182/blood.V99.8.2992. PubMed DOI
Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP, Weinstein HJ, Carroll AJ. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood. 1999;94:3707–3716. PubMed
Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97:89–94. doi: 10.1182/blood.V97.1.89. PubMed DOI
Megonigal MD, Rappaport EF, Jones DH, Williams TM, Lovett BD, Kelly KM, Lerou PH, Moulton T, Budarf ML, Felix CA. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A. 1998;95:6413–6418. doi: 10.1073/pnas.95.11.6413. PubMed DOI PMC
Kempski H, Mensa-Bonsu KA, Kearney L, Jalali GR, Hann I, Khurshid M, Greaves M. Prenatal chromosomal diversification of leukemia in monozygotic twins. Genes Chromosomes Cancer. 2003;37:406–411. doi: 10.1002/gcc.10233. PubMed DOI
Richkind KE, Loew T, Meisner L, Harris C, Wason D. Identical cytogenetic clones and clonal evolution in pediatric monozygotic twins with acute myeloid leukemia: presymptomatic disease detection by interphase fluorescence in situ hybridization and review of the literature. J Pediatr Hematol Oncol. 1998;20:264–267. doi: 10.1097/00043426-199805000-00015. PubMed DOI
Wiemels JL, Xiao Z, Buffler PA, Maia AT, Ma X, Dicks BM, Smith MT, Zhang L, Feusner J, Wiencke J, Pritchard-Jones K, Kempski H, Greaves M. In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood. 2002;99:3801–3805. doi: 10.1182/blood.V99.10.3801. PubMed DOI
McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Feusner J, Matthay K, Dahl G, Smith MT. Prenatal origin of childhood acute myeloid leukemias harboring chromosomal rearrangements t(15;17) and inv(16) Blood. 2003;101:4640–4641. doi: 10.1182/blood-2003-01-0313. PubMed DOI
Jones LK, Neat MJ, van Delft FW, Mitchell MP, Adamaki M, Stoneham SJ, Patel N, Saha V. Cryptic rearrangement involving MLL and AF10 occurring in utero. Leukemia. 2003;17:1667–1669. doi: 10.1038/sj.leu.2403039. PubMed DOI
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. PubMed PMC
Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:110–118. doi: 10.1038/sj/leu/2401245. PubMed DOI
Szczepanski T, Pongers Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER, van Dongen JJ. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood. 1999;93:4079–4085. PubMed
Goulden N, Bader P, Van Der Velden V, Moppett J, Schilham M, Masden HO, Krejci O, Kreyenberg H, Lankester A, Revesz T, Klingebiel T, Van Dongen J. Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. Br J Haematol. 2003;122:24–29. doi: 10.1046/j.1365-2141.2003.04394.x. PubMed DOI
Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–3080. PubMed
Maia AT, Ford AM, Jalali GR, Harrison CJ, Taylor GM, Eden OB, Greaves MF. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood. 2001;98:478–482. doi: 10.1182/blood.V98.2.478. PubMed DOI
Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, Pieters R, Haas OA, Dingermann T, Klingebiel T, Marschalek R. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci U S A. 2005;102:449–454. doi: 10.1073/pnas.0406994102. PubMed DOI PMC
Makowski GS, Davis EL, Aslanzadeh J, Hopfer SM. Enhanced direct amplification of Guthrie card DNA following selective elution of PCR inhibitors. Nucleic Acids Res. 1995;23:3788–3789. PubMed PMC
Wiemels JL, Ford AM, Van Wering ER, Postma A, Greaves M. Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood. 1999;94:1057–1062. PubMed
Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN, Kuo MC, Lai CL, Hsu HC. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100:2387–2392. doi: 10.1182/blood-2002-01-0195. PubMed DOI
Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100:2393–2398. doi: 10.1182/blood-2002-02-0420. PubMed DOI
Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT, Crouse V, Ma X, Buffler PA, Pine SR. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 2002;99:15101–15106. doi: 10.1073/pnas.222481199. PubMed DOI PMC