Nineteenth-century land use shapes the current occurrence of some plant species, but weakly affects the richness and total composition of Central European grasslands
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39816957
PubMed Central
PMC11729212
DOI
10.1007/s10980-024-02016-6
PII: 2016
Knihovny.cz E-zdroje
- Klíčová slova
- Bioindication, Disturbance, Ellenberg indicator values, European history, Hemeroby, Historical landscape, Vascular plant,
- Publikační typ
- časopisecké články MeSH
CONTEXT: Historical land use is thought to have influenced plant community diversity, composition and function through the local persistence of taxa that reflect ecological conditions of the past. OBJECTIVES: We tested for the effects of historical land use on contemporary plant species richness, composition, and ecological preferences in the grassland vegetation of Central Europe. METHODS: We analyzed 6975 vegetation plots sampled between 1946 and 2021 in dry, mesic, and wet grasslands in the borderland between Austria, the Czech Republic, and Slovakia. Using 1819-1853 military maps, we assigned each plot to a historical land-use category (arable land, forest, grassland, settlement, permanent crop, and water body). We modeled the response of species richness, composition, and plant ecological preferences to the historical land use including contemporary covariates. RESULTS: Nineteenth-century land use explained little overall variation in species richness and composition, whereas more variation was explained by contemporary environmental conditions. However, we found that ecological preferences of some species were associated with specific historical land uses. Specifically, species more frequently occurring in historically forested grasslands showed lower light and disturbance frequency indicator values, while those associated with former settlements displayed higher disturbance severity indicator values. CONCLUSIONS: We conclude that signatures of specific land-use conversions, including the restoration of grasslands in human-impacted areas, may still be detectable in grasslands even 200 years into the future. However, while local historical land use influences the occurrence of some species based on their ecological preferences, these effects do not significantly influence community species richness and total composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10980-024-02016-6.
Department of Biology University of Graz Graz Austria
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Plant Science and Biodiversity Center Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 10.18637/jss.v067.i01
Bellemare J, Motzkin G, Foster DR (2002) Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–1420.
Boch S, Biurrun I, Rodwell J (2020) Grasslands of Western Europe. Encycloped World’s Biomes 3–5:678–688.
Boivin N (2021) Crowther A (2021) Mobilizing the past to shape a better Anthropocene. Nat Ecol Evolut 5:273–284. PubMed
Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055.
Brudvig LA, Damschen EI (2011) Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition. Ecography 34:257–266.
Bruun HH, Fritzbøger B, Rindel PO, Hansen UL (2001) Plant species richness in grasslands: the relative importance of contemporary environment and land-use history since the iron age. Ecography 24:569–578.
Bulmer MG (1974) On fitting the poisson lognormal distribution to species-abundance data. Biometrics 30:101.
Chytrý M, Hennekens SM, Jiménez-Alfaro B et al (2016) European vegetation archive (EVA): an integrated database of European vegetation plots. Appl Veg Sci 19:173–180.
Chytrý M, Rafajová M (2003) Czech National PhytosociologicalDatabase: Basic statistics of the available vegetation-plot data. Preslia 75:1–15
Chytrý M, Tichý L, Dřevojan P et al (2018) Ellenberg-type indicator values for the Czech flora. Preslia 90:83–103.
Chytrý M, Tichý L, Hennekens SM et al (2020) EUNIS Habitat Classification: expert system, characteristic species combinations and distribution maps of European habitats. Appl Veg Sci 23:648–675.
Copernicus Land Monitoring Service (2024) CLC+Backbone — Copernicus Land Monitoring Service. 10.2909/cd534ebf-f553-42f0-9ac1-62c1dc36d32c. Accessed 11 Jul 2024
Cousins SAO (2009) Landscape history and soil properties affect grassland decline and plant species richness in rural landscapes. Biol Conserv 142:2752–2758.
Cousins SAO, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landsc Ecol 17:517–529.
Cramer VA, Hobbs RJ, Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol Evol 23:104–112. PubMed
Culbert PD, Dorresteijn I, Loos J et al (2017) Legacy effects of past land use on current biodiversity in a low-intensity farming landscape in Transylvania (Romania). Landsc Ecol 32:429–444.
Damschen EI, Baker DV, Bohrer G et al (2014) How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proc Natl Acad Sci 111:3484–3489. PubMed PMC
De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574. PubMed
De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684.
Deza-Araujo M, Morales-Molino C, Conedera M et al (2022) A new indicator approach to reconstruct agricultural land use in Europe from sedimentary pollen assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 599:111051.
Divíšek J, Chytrý M (2018) High-resolution and large-extent mapping of plant species richness using vegetation-plot databases. Ecol Indic 89:840–851.
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345.
Ellenberg H, Weber HE, Düll R, et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe) 2nd ed. Scripta Geobotanica 18: 1–258
Erdős L, Bede-Fazekas Á, Bátori Z et al (2022) Species-based indicators to assess habitat degradation: Comparing the conceptual, methodological, and ecological relationships between hemeroby and naturalness values. Ecol Indic 136:108707.
Euro+Med PlantBase (2024) Euro+Med PlantBase – the information resource for Euro-Mediterranean plant diversity. https://www.europlusmed.org. Accessed 24 Apr 2024
Fischer HS (2015) On the combination of species cover values from different vegetation layers. Appl Veg Sci 18:169–170.
Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243.
Foster D, Swanson F, Aber J et al (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53:77–88.
Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–230.
Fuchs R, Herold M, Verburg PH et al (2015) Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob Chang Biol 21:299–313. PubMed
Garbarino M, Weisberg PJ (2020) Land-use legacies and forest change. Landsc Ecol 35:2641–2644.
Glass N, de Oliveira ED, Molano-Flores B et al (2023) Root litter decomposition rates and impacts of drought are regulated by ecosystem legacy. Appl Soil Ecol 189:104903.
Greenwell BM (2017) pdp: an R package for constructing partial dependence plots. R J 9:421–436
Gustavsson E, Lennartsson T, Emanuelsson M (2007) Land use more than 200 years ago explains current grassland plant diversity in a Swedish agricultural landscape. Biol Conserv 138:47–59.
Hájek M, Dresler P, Hájková P et al (2017) Long-lasting imprint of former glassworks on vegetation pattern in an extremely species-rich grassland: a battle of species pools on mesic soils. Ecosystems 20:1233–1249.
Harrison XA (2014) Using observation-level randomeffects to model overdispersion in count data in ecology and evolution. PeerJ 2014:e616. PubMed PMC
Hejcman M, Karlík P, Ondráček J, Klír T (2013) Short-term medieval settlement activities irreversibly changed forest soils and vegetation in Central Europe. Ecosystems 16:652–663.
Hengl T, De Jesus JM, Heuvelink GBM et al (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12:e0169748. PubMed PMC
Hermy M, Honnay O, Firbank L et al (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22.
Heubes J, Retzer V, Schmidtlein S, Beierkuhnlein C (2011) Historical land use explains current distribution of calcareous grassland species. Folia Geobot 46:1–16.
Hlásná Čepková P, Karlík P, Viehmannová I et al (2016) Genetic and leaf-trait variability of Vinca minor at ancient and recent localities in Central Europe. Biochem Syst Ecol 64:22–30.
Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941.
Janssen P, Bec S, Fuhr M et al (2018) Present conditions may mediate the legacy effect of past land-use changes on species richness and composition of above- and below-ground assemblages. J Ecol 106:306–318.
Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200.
Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:1–20. PubMed PMC
Karger DN, Conrad O, Böhner J, et al (2017b) Data from: Climatologies at high resolution for the earth’s land surface areas. In: Dryad Digital Repository. 10.5061/dryad.kd1d4 PubMed PMC
Karlík P, Poschlod P (2014) Soil seed-bank composition reveals the land-use history of calcareous grasslands. Acta Oecologica 58:22–34.
Karrer G (1992) Österreichische Waldboden-Zustandsinventur. Teil VII: Vegetationsökologische Analysen (Austrian Forest Soil Status Inventory. Part VII: Vegetation ecology analyses). Mitteilungen Forstliche Bundesversuchsanstalt Wien 188:193–242
Kelemen K, Kriván A, Standovár T (2014) Effects of land-use history and current management on ancient woodland herbs in Western Hungary. J Veg Sci 25:172–183.
Kimberley A, Blackburn GA, Whyatt JD et al (2013) Identifying the trait syndromes of conservation indicator species: how distinct are British ancient woodland indicator plants from other woodland species? Appl Veg Sci 16:667–675.
Klinkovská K, Glaser M, Danihelka J et al (2024) Dynamics of the Czech flora over the last 60 years: winners, losers and causes of changes. Biol Conserv 292:110502.
Krüger G, Schnadt J (2000) Die Entwicklung der geodätischen Grundlagen für die Kartographie und die Kargenwerke 1810–1945. In: Scharfe W, Scheerschmidt H (eds) Berlin-Brandenburg im Kartenbild. Staatsbibliothek zu Berlin, Berlin, pp 26–49
Kuhn T, Domokos P, Kiss R, Ruprecht E (2021) Grassland management and land use history shape species composition and diversity in Transylvanian semi-natural grasslands. Appl Veg Sci 24:e12585.
Lecoq L, Ernoult A, Mony C (2021) Past landscape structure drives the functional assemblages of plants and birds. Sci Rep 11:3443. PubMed PMC
Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. PubMed
Legendre P, Legendre L (2012) Numerical Ecology, 3rd, English. Elsevier, Amsterdam
Levis C, Costa FRC, Bongers F et al (1979) (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355:925–931 PubMed
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22
Lorts CM, Briggeman T, Sang T (2008) Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot. J Syst Evol 46:396.
Martello F, dos Santos JS, Silva-Neto CM et al (2023) Landscape structure shapes the diversity of plant reproductive traits in agricultural landscapes in the Brazilian Cerrado. Agric Ecosyst Environ 341:108216.
Midolo G, Herben T, Axmanová I et al (2023) Disturbance indicator values for European plants. Glob Ecol Biogeogr 32:24–34.
Miguet P, Jackson HB, Jackson ND et al (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194.
Mollier S, Dupouey JL, Kunstler G et al (2022) Stronger legacy effects of cropland than of meadows or pastures on soil conditions and plant communities in French mountain forests. J Veg Sci 33:e13156.
Naimi B, Hamm NAS, Groen TA et al (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203.
Němec R, Vymazalová M, Skokanová H (2022) The Impact of Fine-Scale Present and Historical Land Cover on Plant Diversity in Central European National Parks with Heterogeneous Landscapes. Land (Basel) 11:814.
Oksanen J, Simpson GL, Blanchet FG, et al (2022) vegan: Community Ecology Package
Pan Y, Hersperger AM, Kienast F et al (2022) Spatial and temporal scales of landscape structure affect the biodiversity-landscape relationship across ecologically distinct species groups. Landsc Ecol 37:2311–2325.
Pärtel M, Helm A, Reitalu T et al (2007) Grassland diversity related to the late iron age human population density. J Ecol 95:574–582.
Pärtel M, Mändla R, Zobel M (1999) Landscape history of a calcareous (alvar) grassland in Hanila, western Estonia, during the last three hundred years. Landsc Ecol 14:187–196.
Pazúr R, Nováček J, Bürgi M et al (2024) Changes in grassland cover in Europe from 1990 to 2018: trajectories and spatial patterns. Reg Environ Change 24:1–10.
Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625 PubMed
Perring MP, Bernhardt-Römermann M, Baeten L et al (2018) Global environmental change effects on plant community composition trajectories depend upon management legacies. Glob Chang Biol 24:1722–1740. PubMed
Perring MP, De Frenne P, Baeten L et al (2016) Global environmental change effects on ecosystems: the importance of land-use legacies. Glob Chang Biol 22:1361–1371. PubMed
Poschlod P, Baumann A, Karlik P (2009) Origin and development of grasslands in Central Europe. In: Veen P, Jefferson R, de Smidt J, van der Straaten J (eds) Grasslands in Europe—of high nature value. KNNV Publishing, Eindhoven, pp 15–26
Scherreiks P, Gossner MM, Ambarlı D et al (2022) Present and historical landscape structure shapes current species richness in Central European grasslands. Landsc Ecol 37:745–762.
Shumi G, Schultner J, Dorresteijn I et al (2018) Land use legacy effects on woody vegetation in agricultural landscapes of south-western Ethiopia. Divers Distrib 24:1136–1148.
Skokanová H, Faltan V, Havlicek M (2016) Driving forces of main landscape change proceses from past 200 years in Central Europe–differences between old de mocratic and post-socialist countries. Ekologia Bratislava 35:50–65.
Skokanová H, Havlíček M, Borovec R et al (2012) Development of land use and main land use change processes in the period 1836–2006: case study in the Czech Republic. J Maps 8:88–96.
Sojneková M, Chytrý M (2015) From arable land to species-rich semi-natural grasslands: succession in abandoned fields in a dry region of central Europe. Ecol Eng 77:373–381.
Svenning JC, Baktoft KH, Balslev H (2008) Land-use history affects understorey plant species distributions in a large temperate-forest complex, Denmark. Forest Ecol: Rec Adv Plant Ecol 201:221–234.
Sychrová M, Skokanová H, Musil M, Divíšek J (2024) Landscape heterogeneity shows contrasting spatial patterns but similar temporal changes since the 1840s. Appl Geogr 172:103431.
ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.
Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361.
Tichý L, Axmanová I, Dengler J et al (2023) Ellenberg-type indicator values for European vascular plant species. J Veg Sci. 10.1111/jvs.13168
Timár G, Molnár G, Szákely B, et al (2006) The map sheets of the Second Military Survey and their georeferenced version. Arcanum, Budapest
Török P, Dembicz I, Dajić-Stevanović Z, Kuzemko A (2020) Grasslands of Eastern Europe. Encycloped World’s Biomes 1–5(1–5):703–713.
Vellend M, Verheyen K, Jacquemyn H et al (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548. PubMed
Verheyen K, Honnay O, Motzkin G et al (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577.
Verheyen K, Vellend M, Van Calster H et al (2004) Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85:3302–3312.
Viana DS, Keil P, Jeliazkov A (2022) Disentangling spatial and environmental effects: flexible methods for community ecology and macroecology. Ecosphere 13:e4028.
Vilà-Cabrera A, Astigarraga J, Jump AS et al (2023) Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. Trends Plant Sci 28:1132–1143. PubMed
Walz U (2002) Historische Kartenwerke in Sachsen als Grundlage für Untersuchungen zur Landschaftsentwicklung. In: Němec J (ed) Krajina 2002 od poznání k integraci. Ministerstvo životního prostředí ČR, Ústí nad Labem, pp 113–118
Wesche K, Krause B, Culmsee H, Leuschner C (2012) Fifty years of change in Central European grassland vegetation: Large losses in species richness and animal-pollinated plants. Biol Conserv 150:76–85.
Willner W, Berg C, Heiselmayer P (2012) Austrian Vegetation Database. Biodiv Ecol 4:333–333.
Wulf M (1997) Plant species as indicators of ancient woodland in northwestern Germany. J Veg Sci 8:635–642.
Zhang D (2017) A coefficient of determination for generalized linear models. Am Stat 71:310–316.
Zhang D (2023) rsq: R-Squared and Related Measures. In: https://CRAN.R-project.org/package=rsq