Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera

. 2025 Jan ; 292 (2039) : 20242135. [epub] 20250122

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39837514

Grantová podpora
HORIZON
Viromics

Over the course of evolution, hymenopteran parasitoids have developed a close relationship with heritable viruses, sometimes integrating viral genes into their chromosomes. For example, in Drosophila parasitoids belonging to the Leptopilina genus, 13 viral genes from the Filamentoviridae family have been domesticated to deliver immunosuppressive factors to host immune cells, thereby protecting parasitoid offspring from the host immune response. The present study aims to comprehensively characterize this domestication event in terms of the viral genes involved, the wasp diversity affected by this event and its chronology. Our genomic analysis of 41 Cynipoidea wasps from six subfamilies revealed 18 viral genes that were endogenized during the early radiation of the Eucoilini/Trichoplastini clade around 75 million years ago. Wasps from this highly diverse clade develop not only from Drosophila but also from a variety of Schizophora. This event coincides with the radiation of Schizophora, a highly speciose Diptera clade, suggesting that viral domestication facilitated wasp diversification in response to host diversification. Additionally, in one of the species, at least one viral gene was replaced by another gene derived from a related filamentovirus. This study highlights the impact of viral domestication on the diversification of parasitoid wasps.

Zobrazit více v PubMed

Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA. 2018. Quantifying the unquantifiable: why hymenoptera, not coleoptera, is the most speciose animal order. BMC Ecol. 18, 21. (10.1186/s12898-018-0176-x) PubMed DOI PMC

Lawrence PO. 2005. Non-poly-DNA viruses, their parasitic wasps, and hosts. J. Insect Physiol. 51, 99–101. (10.1016/j.jinsphys.2004.12.012) PubMed DOI

de Buron I, Beckage NE. 1992. Characterization of a polydnavirus (PDV) and virus-like filamentous particle (VLFP) in the braconid wasp Cotesia congregata (Hymenoptera: Braconidae). J. Invertebr. Pathol. 59, 315–327. (10.1016/0022-2011(92)90139-U) DOI

Varaldi J, Fouillet P, Ravallec M, López-Ferber M, Boulétreau M, Fleury F. 2003. Infectious behavior in a parasitoid. Science 302, 1930. (10.1126/science.1088798) PubMed DOI

Coffman KA, Hankinson QM, Burke GR. 2022. A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proc. Natl Acad. Sci. USA 119, e2120048119. (10.1073/pnas.2120048119) PubMed DOI PMC

Varaldi J, Lepetit D, Burlet N, Faber C, Baretje B, Allemand R. 2024. Community structure of heritable viruses in a Drosophila-parasitoids complex. Peer. Community. J. 4, e16. (10.24072/pcjournal.371) DOI

Guinet B, et al. . 2024. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol. 10, veae022. (10.1093/ve/veae022) PubMed DOI PMC

Guinet B, et al. . 2023. Endoparasitoid lifestyle promotes endogenization and domestication of dsDNA viruses. eLife 12, e85993. (10.7554/eLife.85993) PubMed DOI PMC

Bézier A, Herbinière J, Lanzrein B, Drezen JM. 2009. Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. J. Invertebr. Pathol. 101, 194–203. (10.1016/j.jip.2009.04.006) PubMed DOI

Volkoff AN, et al. . 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6, e1000923. (10.1371/journal.ppat.1000923) PubMed DOI PMC

Pichon A, et al. . 2015. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 1, e1501150. (10.1126/sciadv.1501150) PubMed DOI PMC

Burke GR, Simmonds TJ, Sharanowski BJ, Geib SM. 2018. Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture. Mol. Biol. Evol. 35, 2463–2474. (10.1093/molbev/msy148) PubMed DOI

Di Giovanni D, Lepetit D, Guinet B, Bennetot B, Boulesteix M, Couté Y, Bouchez O, Ravallec M, Varaldi J. 2020. A behavior-manipulating virus relative as a source of adaptive genes for Drosophila parasitoids. Mol. Biol. Evol. 37, 2791–2807. (10.1093/molbev/msaa030) PubMed DOI

Chevignon G, et al. . 2014. Functional annotation of Cotesia congregata bracovirus: identification of viral genes expressed in parasitized host immune tissues. J. Virol. 88, 8795–8812. (10.1128/JVI.00209-14) PubMed DOI PMC

Muller H, et al. . 2021. Genome-Wide Patterns of Bracovirus Chromosomal Integration into Multiple Host Tissues during Parasitism. J. Virol. 95, e0068421. (10.1128/JVI.00684-21) PubMed DOI PMC

Rizki RM, Rizki TM. 1990. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc. Natl Acad. Sci. USA 87, 8388–8392. (10.1073/pnas.87.21.8388) PubMed DOI PMC

Drezen JM, Bézier A, Burke GR, Strand MR. 2022. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Curr. Opin. Insect Sci. 49, 93–100. (10.1016/j.cois.2021.12.003) PubMed DOI

Quicke DL. 2014. The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology, 1st edn. Hoboken, NJ: John Wiley & Sons Inc. (10.1002/9781118907085) DOI

Bézier A, et al. . 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926–930. (10.1126/science.1166788) PubMed DOI

Rizki RM, Rizki TM. 1984. Selective destruction of a host blood cell type by a parasitoid wasp. Proc. Natl Acad. Sci. USA 81, 6154–6158. (10.1073/pnas.81.19.6154) PubMed DOI PMC

Gueguen G, Rajwani R, Paddibhatla I, Morales J, Govind S. 2011. VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade. Virus Res. 160, 159–165. (10.1016/j.virusres.2011.06.005) PubMed DOI PMC

Poirié M, Colinet D, Gatti JL. 2014. Insights into function and evolution of parasitoid wasp venoms. Curr. Opin. Insect Sci. 6, 52–60. (10.1016/j.cois.2014.10.004) PubMed DOI

Burke GR, Hines HM, Sharanowski BJ. 2021. The presence of ancient core genes reveals endogenization from diverse viral ancestors in parasitoid wasps. Genome Biol. Evol. 13, 7. (10.1093/gbe/evab105) PubMed DOI PMC

Blaimer BB, Gotzek D, Brady SG, Buffington ML. 2020. Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Evol. Biol. 20, 155. (10.1186/s12862-020-01716-2) PubMed DOI PMC

Buffington ML, Nylander JAA, Heraty JM. 2007. The phylogeny and evolution of Figitidae (Hymenoptera: Cynipoidea). Cladistics 23, 403–431. (10.1111/j.1096-0031.2007.00153.x) DOI

Bayless KM, et al. . 2021. Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. BMC Biol. 19, 23. (10.1186/s12915-020-00944-8) PubMed DOI PMC

Ronquist F. 1999. Phylogeny, classification and evolution of the Cynipoidea. Zool. Scr. 28, 139–164. (10.1046/j.1463-6409.1999.00022.x) DOI

Lue CH, et al. . 2021. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454. (10.1111/1755-0998.13435) PubMed DOI

Nordlander G. 1984. What do we know about parasitic cynipoids (Hymenoptera)? Entomologisk Tidskrift 105, 36–40.

Buffington ML, Forshage M, Liljeblad J, Tang CT, van Noort S. 2020. World Cynipoidea (Hymenoptera): A Key to Higher-Level Groups. Insect Syst. Divers. 4, 1. (10.1093/isd/ixaa003) DOI

Fontal-Cazalla FM, Buffington ML, Nordlander G, Liljeblad J, Ros-Farré P, Nieves-Aldrey JL, Pujade-Villar J, Ronquist F. 2002. Phylogeny of the Eucoilinae (Hymenoptera: Cynipoidea: Figitidae). Cladistics 18, 154–199. (10.1111/j.1096-0031.2002.tb00147.x) PubMed DOI

Ronquist F. 1995. Phylogeny and early evolution of the Cynipoidea (Hymenoptera). Syst. Entomol. 20, 309–335. (10.1111/j.1365-3113.1995.tb00099.x) DOI

Ronquist F, Nieves-Aldrey JL, Buffington ML, Liu Z, Liljeblad J, Nylander JAA. 2015. Phylogeny, evolution and classification of gall wasps: the plot thickens. PLoS One 10, e0123301. (10.1371/journal.pone.0123301) PubMed DOI PMC

Shage MF. 2015. Afrotropical Cynipoidea (Hymenoptera). Zookeys 494, 1–176. (10.3897/zookeys) PubMed DOI PMC

Guy L, Roat Kultima J, Andersson SGE. 2010. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335. (10.1093/bioinformatics/btq413) PubMed DOI PMC

Su J, Lung O, Blissard GW. 2011. The Autographa californica multiple nucleopolyhedrovirus lef-5 gene is required for productive infection. Virology (Auckl) 416, 54–64. (10.1016/j.virol.2011.04.019) PubMed DOI

Dong F, Wang J, Deng R, Wang X. 2016. Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment. Virus Res. 221, 47–57. (10.1016/j.virusres.2016.05.005) PubMed DOI

Colinet D, Schmitz A, Depoix D, Crochard D, Poirié M. 2007. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, e203. (10.1371/journal.ppat.0030203) PubMed DOI PMC

Murphy N, Banks JC, Whitfield JB, Austin AD. 2008. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol. Phylogenet. Evol. 47, 378–395. (10.1016/j.ympev.2008.01.022) PubMed DOI

Mardulyn P, Whitfield JB. 1999. Phylogenetic signal in the COI, 16S, and 28S genes for inferring relationships among genera of microgastrinae (Hymenoptera; Braconidae): evidence of a high diversification rate in this group of parasitoids. Mol. Phylogenet. Evol. 12, 282–294. (10.1006/mpev.1999.0618) PubMed DOI

Buffington ML, Brady SG, Morita SI, Van Noort S. 2012. Divergence estimates and early evolutionary history of Figitidae (Hymenoptera: Cynipoidea). Syst. Entomol. 37, 287–304. (10.1111/j.1365-3113.2012.00617.x) DOI

Junqueira ACM, Azeredo-Espin AML, Paulo DF, Marinho MAT, Tomsho LP, Drautz-Moses DI, Purbojati RW, Ratan A, Schuster SC. 2016. Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity. Sci. Rep. 6, 21762. (10.1038/srep21762) PubMed DOI PMC

Wiegmann BM, et al. . 2011. Episodic radiations in the fly tree of life. Proc. Natl Acad. Sci. USA 108, 5690–5695. (10.1073/pnas.1012675108) PubMed DOI PMC

Lue CH, Driskell AC, Leips J, Buffington ML. 2016. Review of the genus Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern United States, including three newly described species. J. Hymenoptera Res. 53, 35–76. (10.3897/jhr.53.10369) DOI

Abram PK, et al. . 2022. Adventive larval parasitoids reconstruct their close association with Spotted-Wing Drosophila in the invaded north american range. Environ. Entomol. 51, 670–678. (10.1093/ee/nvac019) PubMed DOI

Nomano FY, Kasuya N, Matsuura A, Suwito A, Mitsui H, Buffington ML, Kimura MT. 2017. Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Appl. Entomol. Zool. 52, 429–437. (10.1007/s13355-017-0493-0) DOI

Wang X, Hogg BN, Hougardy E, Nance AH, Daane KM. 2019. Potential competitive outcomes among three solitary larval endoparasitoids as candidate agents for classical biological control of Drosophila suzukii. Biol. Control 130, 18–26. (10.1016/j.biocontrol.2018.12.003) DOI

Petersen KR, Streett DA, Gerritsen AT, Hunter SS, Settles ML. 2015. Super deduper, fast PCR duplicate detection in fastq files. In Proceedings of the 6th ACM conference on bioinformatics, computational biology and health informatics, Atlanta, Georgia, pp. 491–492. New York, NY: ACM. (10.1145/2808719) DOI

Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. (10.1093/bioinformatics/btv033) PubMed DOI

Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113–e113. (10.1093/nar/gkw294) PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. (10.1093/bioinformatics/btv351) PubMed DOI

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. (10.1093/bioinformatics/btt086) PubMed DOI PMC

Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028. (10.1038/nbt.3988) PubMed DOI

Levy Karin E, Mirdita M, Söding J. 2020. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48. (10.1186/s40168-020-00808-x) PubMed DOI PMC

Miller DW, Miller LK. 1982. A virus mutant with an insertion of a copia-like transposable element. Nature 299, 562–564. (10.1038/299562a0) PubMed DOI

Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, Cordaux R. 2014. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat. Commun. 5, 3348. (10.1038/ncomms4348) PubMed DOI PMC

Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA. 2016. Continuous influx of genetic material from host to virus populations. PLoS Genet. 12, e1005838. (10.1371/journal.pgen.1005838) PubMed DOI PMC

Gilbert C, Cordaux R. 2017. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 25, 16–22. (10.1016/j.coviro.2017.06.005) PubMed DOI

Loiseau V, Herniou EA, Moreau Y, Lévêque N, Meignin C, Daeffler L, Federici B, Cordaux R, Gilbert C. 2020. Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evol. 6, vez060. (10.1093/ve/vez060) PubMed DOI PMC

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler 2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457. (10.1073/pnas.1921046117) PubMed DOI PMC

Sievers F, et al. . 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539. (10.1038/msb.2011.75) PubMed DOI PMC

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 2461–2461. (10.1093/molbev/msaa131) PubMed DOI PMC

Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. 2019. The prevalence and impact of model violations in phylogenetic analysis. Genome Biol. Evol. 11, 3341–3352. (10.1093/gbe/evz193) PubMed DOI PMC

Elmrabet NKH. 1999. Écobiologie de trybli- ographa Rapae W. (Hymenoptera: Figitidae), en- Doparasitoide de la mouche du chou Delia radicum l. (Diptera: Anthomyiidae). Directed by Jean-Pierre Nénon. PhD thesis, University of Rennes, Rennes, France.

Guinet B, Vogel J, Kacem Haddj El Mrabet Net al. . 2025. Data from: Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera. Dryad Digital Repository (10.5061/dryad.n8pk0p35c) PubMed DOI PMC

Guinet B, Vogel J, Kacem Haddj El Mrabet N, Peters RS, Hrcek J, Buffington M. 2024. Supplementary material from: Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera. Figshare. (10.6084/m9.figshare.c.7592436) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera

. 2025 Jan ; 292 (2039) : 20242135. [epub] 20250122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...