Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
HORIZON
Viromics
PubMed
39837514
PubMed Central
PMC11750357
DOI
10.1098/rspb.2024.2135
Knihovny.cz E-zdroje
- Klíčová slova
- Cynipoidea, HGT, endogenous viral elements, filamentovirus, palaeovirology, parasitoid wasp,
- MeSH
- Diptera virologie MeSH
- domestikace MeSH
- fylogeneze MeSH
- sršňovití * virologie genetika fyziologie MeSH
- virové geny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Over the course of evolution, hymenopteran parasitoids have developed a close relationship with heritable viruses, sometimes integrating viral genes into their chromosomes. For example, in Drosophila parasitoids belonging to the Leptopilina genus, 13 viral genes from the Filamentoviridae family have been domesticated to deliver immunosuppressive factors to host immune cells, thereby protecting parasitoid offspring from the host immune response. The present study aims to comprehensively characterize this domestication event in terms of the viral genes involved, the wasp diversity affected by this event and its chronology. Our genomic analysis of 41 Cynipoidea wasps from six subfamilies revealed 18 viral genes that were endogenized during the early radiation of the Eucoilini/Trichoplastini clade around 75 million years ago. Wasps from this highly diverse clade develop not only from Drosophila but also from a variety of Schizophora. This event coincides with the radiation of Schizophora, a highly speciose Diptera clade, suggesting that viral domestication facilitated wasp diversification in response to host diversification. Additionally, in one of the species, at least one viral gene was replaced by another gene derived from a related filamentovirus. This study highlights the impact of viral domestication on the diversification of parasitoid wasps.
Centre for Palaeogenetics Stockholm Sweden
Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
USDA ARS Systematic Entomology Laboratory Washington D C USA
Zobrazit více v PubMed
Forbes AA, Bagley RK, Beer MA, Hippee AC, Widmayer HA. 2018. Quantifying the unquantifiable: why hymenoptera, not coleoptera, is the most speciose animal order. BMC Ecol. 18, 21. (10.1186/s12898-018-0176-x) PubMed DOI PMC
Lawrence PO. 2005. Non-poly-DNA viruses, their parasitic wasps, and hosts. J. Insect Physiol. 51, 99–101. (10.1016/j.jinsphys.2004.12.012) PubMed DOI
de Buron I, Beckage NE. 1992. Characterization of a polydnavirus (PDV) and virus-like filamentous particle (VLFP) in the braconid wasp Cotesia congregata (Hymenoptera: Braconidae). J. Invertebr. Pathol. 59, 315–327. (10.1016/0022-2011(92)90139-U) DOI
Varaldi J, Fouillet P, Ravallec M, López-Ferber M, Boulétreau M, Fleury F. 2003. Infectious behavior in a parasitoid. Science 302, 1930. (10.1126/science.1088798) PubMed DOI
Coffman KA, Hankinson QM, Burke GR. 2022. A viral mutualist employs posthatch transmission for vertical and horizontal spread among parasitoid wasps. Proc. Natl Acad. Sci. USA 119, e2120048119. (10.1073/pnas.2120048119) PubMed DOI PMC
Varaldi J, Lepetit D, Burlet N, Faber C, Baretje B, Allemand R. 2024. Community structure of heritable viruses in a Drosophila-parasitoids complex. Peer. Community. J. 4, e16. (10.24072/pcjournal.371) DOI
Guinet B, et al. . 2024. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol. 10, veae022. (10.1093/ve/veae022) PubMed DOI PMC
Guinet B, et al. . 2023. Endoparasitoid lifestyle promotes endogenization and domestication of dsDNA viruses. eLife 12, e85993. (10.7554/eLife.85993) PubMed DOI PMC
Bézier A, Herbinière J, Lanzrein B, Drezen JM. 2009. Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. J. Invertebr. Pathol. 101, 194–203. (10.1016/j.jip.2009.04.006) PubMed DOI
Volkoff AN, et al. . 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6, e1000923. (10.1371/journal.ppat.1000923) PubMed DOI PMC
Pichon A, et al. . 2015. Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci. Adv. 1, e1501150. (10.1126/sciadv.1501150) PubMed DOI PMC
Burke GR, Simmonds TJ, Sharanowski BJ, Geib SM. 2018. Rapid viral symbiogenesis via changes in parasitoid wasp genome architecture. Mol. Biol. Evol. 35, 2463–2474. (10.1093/molbev/msy148) PubMed DOI
Di Giovanni D, Lepetit D, Guinet B, Bennetot B, Boulesteix M, Couté Y, Bouchez O, Ravallec M, Varaldi J. 2020. A behavior-manipulating virus relative as a source of adaptive genes for Drosophila parasitoids. Mol. Biol. Evol. 37, 2791–2807. (10.1093/molbev/msaa030) PubMed DOI
Chevignon G, et al. . 2014. Functional annotation of Cotesia congregata bracovirus: identification of viral genes expressed in parasitized host immune tissues. J. Virol. 88, 8795–8812. (10.1128/JVI.00209-14) PubMed DOI PMC
Muller H, et al. . 2021. Genome-Wide Patterns of Bracovirus Chromosomal Integration into Multiple Host Tissues during Parasitism. J. Virol. 95, e0068421. (10.1128/JVI.00684-21) PubMed DOI PMC
Rizki RM, Rizki TM. 1990. Parasitoid virus-like particles destroy Drosophila cellular immunity. Proc. Natl Acad. Sci. USA 87, 8388–8392. (10.1073/pnas.87.21.8388) PubMed DOI PMC
Drezen JM, Bézier A, Burke GR, Strand MR. 2022. Bracoviruses, ichnoviruses, and virus-like particles from parasitoid wasps retain many features of their virus ancestors. Curr. Opin. Insect Sci. 49, 93–100. (10.1016/j.cois.2021.12.003) PubMed DOI
Quicke DL. 2014. The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology, 1st edn. Hoboken, NJ: John Wiley & Sons Inc. (10.1002/9781118907085) DOI
Bézier A, et al. . 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926–930. (10.1126/science.1166788) PubMed DOI
Rizki RM, Rizki TM. 1984. Selective destruction of a host blood cell type by a parasitoid wasp. Proc. Natl Acad. Sci. USA 81, 6154–6158. (10.1073/pnas.81.19.6154) PubMed DOI PMC
Gueguen G, Rajwani R, Paddibhatla I, Morales J, Govind S. 2011. VLPs of Leptopilina boulardi share biogenesis and overall stellate morphology with VLPs of the heterotoma clade. Virus Res. 160, 159–165. (10.1016/j.virusres.2011.06.005) PubMed DOI PMC
Poirié M, Colinet D, Gatti JL. 2014. Insights into function and evolution of parasitoid wasp venoms. Curr. Opin. Insect Sci. 6, 52–60. (10.1016/j.cois.2014.10.004) PubMed DOI
Burke GR, Hines HM, Sharanowski BJ. 2021. The presence of ancient core genes reveals endogenization from diverse viral ancestors in parasitoid wasps. Genome Biol. Evol. 13, 7. (10.1093/gbe/evab105) PubMed DOI PMC
Blaimer BB, Gotzek D, Brady SG, Buffington ML. 2020. Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Evol. Biol. 20, 155. (10.1186/s12862-020-01716-2) PubMed DOI PMC
Buffington ML, Nylander JAA, Heraty JM. 2007. The phylogeny and evolution of Figitidae (Hymenoptera: Cynipoidea). Cladistics 23, 403–431. (10.1111/j.1096-0031.2007.00153.x) DOI
Bayless KM, et al. . 2021. Beyond Drosophila: resolving the rapid radiation of schizophoran flies with phylotranscriptomics. BMC Biol. 19, 23. (10.1186/s12915-020-00944-8) PubMed DOI PMC
Ronquist F. 1999. Phylogeny, classification and evolution of the Cynipoidea. Zool. Scr. 28, 139–164. (10.1046/j.1463-6409.1999.00022.x) DOI
Lue CH, et al. . 2021. DROP: Molecular voucher database for identification of Drosophila parasitoids. Mol. Ecol. Resour. 21, 2437–2454. (10.1111/1755-0998.13435) PubMed DOI
Nordlander G. 1984. What do we know about parasitic cynipoids (Hymenoptera)? Entomologisk Tidskrift 105, 36–40.
Buffington ML, Forshage M, Liljeblad J, Tang CT, van Noort S. 2020. World Cynipoidea (Hymenoptera): A Key to Higher-Level Groups. Insect Syst. Divers. 4, 1. (10.1093/isd/ixaa003) DOI
Fontal-Cazalla FM, Buffington ML, Nordlander G, Liljeblad J, Ros-Farré P, Nieves-Aldrey JL, Pujade-Villar J, Ronquist F. 2002. Phylogeny of the Eucoilinae (Hymenoptera: Cynipoidea: Figitidae). Cladistics 18, 154–199. (10.1111/j.1096-0031.2002.tb00147.x) PubMed DOI
Ronquist F. 1995. Phylogeny and early evolution of the Cynipoidea (Hymenoptera). Syst. Entomol. 20, 309–335. (10.1111/j.1365-3113.1995.tb00099.x) DOI
Ronquist F, Nieves-Aldrey JL, Buffington ML, Liu Z, Liljeblad J, Nylander JAA. 2015. Phylogeny, evolution and classification of gall wasps: the plot thickens. PLoS One 10, e0123301. (10.1371/journal.pone.0123301) PubMed DOI PMC
Shage MF. 2015. Afrotropical Cynipoidea (Hymenoptera). Zookeys 494, 1–176. (10.3897/zookeys) PubMed DOI PMC
Guy L, Roat Kultima J, Andersson SGE. 2010. GenoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335. (10.1093/bioinformatics/btq413) PubMed DOI PMC
Su J, Lung O, Blissard GW. 2011. The Autographa californica multiple nucleopolyhedrovirus lef-5 gene is required for productive infection. Virology (Auckl) 416, 54–64. (10.1016/j.virol.2011.04.019) PubMed DOI
Dong F, Wang J, Deng R, Wang X. 2016. Autographa californica multiple nucleopolyhedrovirus gene ac81 is required for nucleocapsid envelopment. Virus Res. 221, 47–57. (10.1016/j.virusres.2016.05.005) PubMed DOI
Colinet D, Schmitz A, Depoix D, Crochard D, Poirié M. 2007. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, e203. (10.1371/journal.ppat.0030203) PubMed DOI PMC
Murphy N, Banks JC, Whitfield JB, Austin AD. 2008. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol. Phylogenet. Evol. 47, 378–395. (10.1016/j.ympev.2008.01.022) PubMed DOI
Mardulyn P, Whitfield JB. 1999. Phylogenetic signal in the COI, 16S, and 28S genes for inferring relationships among genera of microgastrinae (Hymenoptera; Braconidae): evidence of a high diversification rate in this group of parasitoids. Mol. Phylogenet. Evol. 12, 282–294. (10.1006/mpev.1999.0618) PubMed DOI
Buffington ML, Brady SG, Morita SI, Van Noort S. 2012. Divergence estimates and early evolutionary history of Figitidae (Hymenoptera: Cynipoidea). Syst. Entomol. 37, 287–304. (10.1111/j.1365-3113.2012.00617.x) DOI
Junqueira ACM, Azeredo-Espin AML, Paulo DF, Marinho MAT, Tomsho LP, Drautz-Moses DI, Purbojati RW, Ratan A, Schuster SC. 2016. Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity. Sci. Rep. 6, 21762. (10.1038/srep21762) PubMed DOI PMC
Wiegmann BM, et al. . 2011. Episodic radiations in the fly tree of life. Proc. Natl Acad. Sci. USA 108, 5690–5695. (10.1073/pnas.1012675108) PubMed DOI PMC
Lue CH, Driskell AC, Leips J, Buffington ML. 2016. Review of the genus Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern United States, including three newly described species. J. Hymenoptera Res. 53, 35–76. (10.3897/jhr.53.10369) DOI
Abram PK, et al. . 2022. Adventive larval parasitoids reconstruct their close association with Spotted-Wing Drosophila in the invaded north american range. Environ. Entomol. 51, 670–678. (10.1093/ee/nvac019) PubMed DOI
Nomano FY, Kasuya N, Matsuura A, Suwito A, Mitsui H, Buffington ML, Kimura MT. 2017. Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Appl. Entomol. Zool. 52, 429–437. (10.1007/s13355-017-0493-0) DOI
Wang X, Hogg BN, Hougardy E, Nance AH, Daane KM. 2019. Potential competitive outcomes among three solitary larval endoparasitoids as candidate agents for classical biological control of Drosophila suzukii. Biol. Control 130, 18–26. (10.1016/j.biocontrol.2018.12.003) DOI
Petersen KR, Streett DA, Gerritsen AT, Hunter SS, Settles ML. 2015. Super deduper, fast PCR duplicate detection in fastq files. In Proceedings of the 6th ACM conference on bioinformatics, computational biology and health informatics, Atlanta, Georgia, pp. 491–492. New York, NY: ACM. (10.1145/2808719) DOI
Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676. (10.1093/bioinformatics/btv033) PubMed DOI
Pryszcz LP, Gabaldón T. 2016. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113–e113. (10.1093/nar/gkw294) PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. (10.1093/bioinformatics/btv351) PubMed DOI
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. (10.1093/bioinformatics/btt086) PubMed DOI PMC
Steinegger M, Söding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028. (10.1038/nbt.3988) PubMed DOI
Levy Karin E, Mirdita M, Söding J. 2020. MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics. Microbiome 8, 48. (10.1186/s40168-020-00808-x) PubMed DOI PMC
Miller DW, Miller LK. 1982. A virus mutant with an insertion of a copia-like transposable element. Nature 299, 562–564. (10.1038/299562a0) PubMed DOI
Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, Cordaux R. 2014. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat. Commun. 5, 3348. (10.1038/ncomms4348) PubMed DOI PMC
Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA. 2016. Continuous influx of genetic material from host to virus populations. PLoS Genet. 12, e1005838. (10.1371/journal.pgen.1005838) PubMed DOI PMC
Gilbert C, Cordaux R. 2017. Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Curr. Opin. Virol. 25, 16–22. (10.1016/j.coviro.2017.06.005) PubMed DOI
Loiseau V, Herniou EA, Moreau Y, Lévêque N, Meignin C, Daeffler L, Federici B, Cordaux R, Gilbert C. 2020. Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evol. 6, vez060. (10.1093/ve/vez060) PubMed DOI PMC
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020. RepeatModeler 2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457. (10.1073/pnas.1921046117) PubMed DOI PMC
Sievers F, et al. . 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539. (10.1038/msb.2011.75) PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 2461–2461. (10.1093/molbev/msaa131) PubMed DOI PMC
Naser-Khdour S, Minh BQ, Zhang W, Stone EA, Lanfear R. 2019. The prevalence and impact of model violations in phylogenetic analysis. Genome Biol. Evol. 11, 3341–3352. (10.1093/gbe/evz193) PubMed DOI PMC
Elmrabet NKH. 1999. Écobiologie de trybli- ographa Rapae W. (Hymenoptera: Figitidae), en- Doparasitoide de la mouche du chou Delia radicum l. (Diptera: Anthomyiidae). Directed by Jean-Pierre Nénon. PhD thesis, University of Rennes, Rennes, France.
Guinet B, Vogel J, Kacem Haddj El Mrabet Net al. . 2025. Data from: Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera. Dryad Digital Repository (10.5061/dryad.n8pk0p35c) PubMed DOI PMC
Guinet B, Vogel J, Kacem Haddj El Mrabet N, Peters RS, Hrcek J, Buffington M. 2024. Supplementary material from: Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera. Figshare. (10.6084/m9.figshare.c.7592436) PubMed DOI PMC
Dating the origin of a viral domestication event in parasitoid wasps attacking Diptera