• This record comes from PubMed

DROP: Molecular voucher database for identification of Drosophila parasitoids

. 2021 Oct ; 21 (7) : 2437-2454. [epub] 20210610

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
G12 MD007603 NIMHD NIH HHS - United States

Molecular identification is increasingly used to speed up biodiversity surveys and laboratory experiments. However, many groups of organisms cannot be reliably identified using standard databases such as GenBank or BOLD due to lack of sequenced voucher specimens identified by experts. Sometimes a large number of sequences are available, but with too many errors to allow identification. Here, we address this problem for parasitoids of Drosophila by introducing a curated open-access molecular reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is challenging and poses a major impediment to realize the full potential of this model system in studies ranging from molecular mechanisms to food webs, and in biological control of Drosophila suzukii. In DROP, genetic data are linked to voucher specimens and, where possible, the voucher specimens are identified by taxonomists and vetted through direct comparison with primary type material. To initiate DROP, we curated 154 laboratory strains, 856 vouchers, 554 DNA sequences, 16 genomes, 14 transcriptomes, and six proteomes drawn from a total of 183 operational taxonomic units (OTUs): 114 described Drosophila parasitoid species and 69 provisional species. We found species richness of Drosophila parasitoids to be heavily underestimated and provide an updated taxonomic catalogue for the community. DROP offers accurate molecular identification and improves cross-referencing between individual studies that we hope will catalyse research on this diverse and fascinating model system. Our effort should also serve as an example for researchers facing similar molecular identification problems in other groups of organisms.

Agriculture and Agri Food Canada Agassiz Research and Development Centre Agassiz BC Canada

Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic

Biology Department University of Kentucky Lexington KY USA

Centre for Biodiversity Genomics University of Guelph Guelph ON Canada

CNR Institute for Sustainable Plant Protection National Research Council of Italy Portici Italy

CNRS Laboratoire de Biométrie et Biologie Evolutive UMR 5558 Université de Lyon Université Lyon 1 Villeurbanne France

Department of Biological Sciences University of Maryland Baltimore County Baltimore MD USA

Department of Biology Brooklyn College City University of New York Brooklyn NY USA

Department of Biology Indiana University Bloomington Bloomington IN USA

Department of Entomology University of Arizona Tucson AZ USA

Department of Entomology University of Minnesota Saint Paul MN USA

Department of Environmental Science Policy and Management University of California Berkeley CA USA

Department of Genetics University of Cambridge Cambridge UK

Department of Zoology University of Oxford Oxford UK

Évolution Génomes Comportement Écologie CNRS et Université Paris Saclay Paris France

Faculty of Science University of South Bohemia Branisovska 31 Czech Republic

Gill Center for Biomolecular Science Indiana University Bloomington Bloomington IN USA

Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen the Netherlands

Hokkaido University Museum Sapporo Hokkaido Japan

INRAE CNRS and Evolution and Specificity of Multitrophic Interactions Sophia Agrobiotech Institute Université Côte d'Azur Sophia Antipolis France

Laboratories of Analytical Biology Smithsonian Institution National Museum of Natural History Washington DC USA

Smithsonian Institution National Museum of Natural History Washington DC USA

Systematic Entomology Laboratory ARS USDA c o Smithsonian Institution National Museum of Natural History Washington DC USA

The Graduate Center of the City University of New York New York NY USA

United States Department of Agriculture Agricultural Research Services Beneficial Insects Introduction Research Unit Newark DE USA

Wildlife and Fisheries Sciences Department Texas A and M University College Station TX USA

See more in PubMed

Abram, P. K., McPherson, A. E., Kula, R., Hueppelsheuser, T., Thiessen, J., Perlman, S. J., Curtis, C. I., Fraser, J. L., Tam, J., Carrillo, J., Gates, M., Scheffer, S., Lewis, M., & Buffington, M. (2020). New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. Journal of Hymenoptera Research, 78, 1-17. https://doi.org/10.3897/jhr.78.55026.

Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys, 365, 67-70. https://doi.org/10.3897/zookeys.365.5875.

Baker, C. C. M., Bittleston, L. S., Sanders, J. G., & Pierce, N. E. (2016). Dissecting host-associated communities with DNA barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), https://doi.org/10.1098/rstb.2015.0328.

Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G. N., Ribera, I., Nilsson, A. N., Barraclough, T. G., & Vogler, A. P. (2012). The effect of geographical scale of sampling on DNA barcoding. Systematic Biology, 61(5), 851-869. https://doi.org/10.1093/sysbio/sys037.

Blaimer, B. B., Gotzek, D., Brady, S. G., & Buffington, M. (2020). Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. BMC Ecology and Evolution, 20(155), https://doi.org/10.1186/s12862-020-01716-2.

Brower, A. V. Z., & DeSalle, R. (2002). Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: The utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology, 7(1), 73-82. https://doi.org/10.1046/j.1365-2583.1998.71052.x.

Buffington, M., & Forshage, M. (2016). Redescription of Ganaspis brasiliensis (Ihering, 1905), new combination, (Hymenoptera: Figitidae) a natural enemy of the Invasive Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae). Proceedings of the Entomological Society of Washington, 118(1), 1-13. https://doi.org/10.4289/0013-8797.118.1.1.

Buffington, M., Talamas, E. J., & Hoelmer, K. A. (2018). Team Trissolcus: Integrating taxonomy and biological control to combat the brown marmorated stink bug. American Entomologist, 64(4), 224-232.

Carton, Y., Boulétreau, M., van Alphen, J. J. M., & van Lenteren, J. C. (1986). The Drosophila parasitic wasps. In M. Ashburner, J. H. L. Carson, & J. N. Thompson (Eds), The genetics and biology of Drosophila (pp. 348-394).Academic Press, 3c.

Carton, Y., Haouas, S., Marrakchi, M., & Hochberg, M. (1991). Two competing parasitoid species coexist in sympatry. Oikos, 60, 222-230. https://doi.org/10.2307/3544869.

Condon, M. A., Scheffer, S. J., Lewis, M. L., Wharton, R., Adams, D. C., & Forbes, A. A. (2014). Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science, 343(6176), 1240-1244. https://doi.org/10.1126/science.1245007.

Daane, K. M., Wang, X.-G., Biondi, A., Miller, B., Miller, J. C., Riedl, H., Shearer, P. W., Guerrieri, E., Giorgini, M., Buffington, M., van Achterberg, K., Song, Y., Kang, T., Yi, H., Jung, C., Lee, D. W., Chung, B.-K., Hoelmer, K. A., & Walton, V. M. (2016). First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. Journal of Pest Science, 89, 823-835. https://doi.org/10.1007/s10340-016-0740-0.

Dolphin, K., & Quicke, D. L. J. (2001). Estimating the global incompletely described parasitoid wasps. Biological Journal of the Linnean Society, 73(3), 279-286.

Escalante, P., Ibarra-Vazquez, A., & Rosas-Escobar, P. (2010). Tropical montane nymphalids in Mexico: DNA barcodes reveal greater diversity. Mitochondrial DNA, 21, 30-37. https://doi.org/10.3109/19401736.2010.535527.

Fagan-Jeffries, E. P., Cooper, S. J. B., Bertozzi, T., Bradford, T. M., & Austin, A. D. (2018). DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using high-throughput methods more than doubles the number of species known for Australia. Molecular Ecology Resources, 18(5), 1132-1143. https://doi.org/10.1111/1755-0998.12904.

Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species. Biological Journal of the Linnean Society, 75, 509-516. https://doi.org/10.1046/j.1095-8312.2002.00042.x.

Ferrer-Suay, M., Staverløkk, A., Selfa, J., Pujade-Villar, J., Naik, S., & Ekrem, T. (2018). Nuclear and mitochondrial markers suggest new species boundaries in Alloxysta (Hymenoptera: Cynipoidea: Figitidae). Arthropod Systematics & Phylogeny, 76(3), 463-473. https://doi.org/10.5883/DSALLOXYST.

Fontes, J. T., Vieire, P. E., Ekrem, T., Soares, P., & Costa, F. O. (2021). BAGS: An automated barcode, audit & grade system for DNA barcode reference libraries. Molecular Ecology Resources, 21(2), 573-583. https://doi.org/10.1111/1755-0998.13262.

Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecology, 18(1), 1-11. https://doi.org/10.1186/s12898-018-0176-x.

Funk, V. A. (2018). Collections-based science in the 21st Century. Journal of Systematics and Evolution, 56(3), 175-193. https://doi.org/10.1111/jse.12315.

Funk, V. A., Hoch, P. C., Prather, L. A., & Wagner, W. L. (2005). The importance of vouchers. Taxon, 54(1), 127-129. https://doi.org/10.2307/25065309.

Gariepy, T. D., Bruin, A., Konopka, J., Scott-Dupree, C., Fraser, H., Bon, M. C., & Talamas, E. (2019). A modified DNA barcode approach to define trophic interactions between native and exotic pentatomids and their parasitoids. Molecular Ecology, 28(2), 456-470. https://doi.org/10.1111/mec.14868.

Giorgini, M., Wang, X.-G., Wang, Y., Chen, F.-S., Hougardy, E., Zhang, H.-M., Chen, Z.-Q., Chen, H.-Y., Liu, C.-X., Cascone, P., Formisano, G., Carvalho, G. A., Biondi, A., Buffington, M., Daane, K. M., Hoelmer, K. A., & Guerrieri, E. (2019). Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. Journal of Pest Science, 92(2), 509-522. https://doi.org/10.1007/s10340-018-01068-3.

Girod, P., Borowiec, N., Buffington, M., Chen, G., Fang, Y., Kimura, M. T., Peris-Felipo, F. J., Ris, N., Wu, H., Xiao, C., Zhang, J., Aebi, A., Haye, T., & Kenis, M. (2018). The parasitoid complex of D. suzukii and other fruit feeding Drosophila species in Asia. Scientific Reports, 8(1), e11839. https://doi.org/10.1038/s41598-018-29555-8.

Girod, P., Lierhmann, O., Urvois, T., Turlings, T. C. J., Kenis, M., & Haye, T. (2018). Host specificity of Asian parasitoids for potential classical biological control of Drosophila suzukii. Journal of Pest Science 91, 1241-1250. https://doi.org/10.1007/s10340-018-1003-z

Goldstein, P. Z., & DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. BioEssays, 33(2), 135-147. https://doi.org/10.1002/bies.201000036.

Gompert, Z., Forister, M. L., Fordyce, J. A., & Nice, C. C. (2008). Widespread mito-nuclear discordance with evidence for introgressive hybridization and selective sweeps in Lycaeides. Molecular Ecology, 17(24), 5231-5244. https://doi.org/10.1111/j.1365-294X.2008.03988.x.

Hausmann, A., Haszprunar, G., & Hebert, P. D. N. (2011). DNA barcoding the geometrid fauna of bavaria (Lepidoptera): Successes, surprises, and questions. PLoS One, 6(2), 1-9. https://doi.org/10.1371/journal.pone.0017134.

Hausmann, A., Miller, S. E., Holloway, J. D., Dewaard, J. R., Pollock, D., Prosser, S. W. J., & Hebert, P. D. N. (2016). Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). Genome, 59(9), 671-684. https://doi.org/10.1139/gen-2015-0197.

Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270 (Suppl.), 96-99. https://doi.org/10.1098/rsbl.2003.0025

Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P. D. N., Hausmann, A., Köhler, F., & Balke, M. (2015). A comprehensive DNA barcode database for Central European beetles with a focus on Germany: Adding more than 3500 identified species to BOLD. Molecular Ecology Resources, 15(4), 795-818. https://doi.org/10.1111/1755-0998.12354.

Hrček, J., & Godfray, H. C. J. (2015). What do molecular methods bring to host-parasitoid food webs? Trends in Parasitology, 31(1), 30-35. https://doi.org/10.1016/j.pt.2014.10.008.

Hrcek, J., Miller, S. E., Quicke, D. L. J., & Smith, M. A. (2011). Molecular detection of trophic links in a complex insect host-parasitoid food web. Molecular Ecology Resources, 11(5), 786-794. https://doi.org/10.1111/j.1755-0998.2011.03016.x.

Huffaker, C. B., Kennett, C. E., & Finney, G. L. (1962). Biological control of olive scale, Pwrlatoria oleae (Cohree), in California by imported Aphytis maculicornis (Masi) (Hymenoptera: Aphelinidae). Hilgardia, 32(13), 541-636. https://doi.org/10.3733/hilg.v32n13p541.

Hughes, R. D., & Woolcock, L. T. (1976). Aphaereta aotea sp. N. (Hymenoptera:Braconidae), an Alysiine parasite of dung breeding flies. Journal of Australian Entomological Society, 15, 191-196.

Jeffs, C. T., Terry, J. C. D., Higgie, M., Jandová, A., Konvičková, H., Brown, J. J., Lue, C.-H., & Lewis, O. T. (2020). Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila - parasitoid communities. Ecography, 43, 1-11. https://doi.org/10.1111/ecog.05390.

Kim-Jo, C., Gatti, J. L., & Poirié, M. (2019). Drosophila cellular immunity against parasitoid wasps: A complex and time-dependent process. Frontiers in Physiology, 10, 603. https://doi.org/10.3389/fphys.2019.00603

Kimura, M. T. (2015). Prevalence of exotic frugivorous Drosophila species, D. simulans and D. immigrans (Diptera: Drosophilidae), and its effects on local parasitoids in Sapporo, northern Japan. Applied Entomology and Zoology, 50(4), 509-515. https://doi.org/10.1007/s13355-015-0361-8.

Kimura, M. T., & Mitsui, H. (2020). Drosophila parasitoids (Hymenoptera) of Japan. Entomological Science, 23(4), 359-368. https://doi.org/10.1111/ens.12432.

Klopfstein, S., Kropf, C., & Baur, H. (2016). Wolbachia endosymbionts distort DNA barcoding in the parasitoid wasp genus Diplazon (Hymenoptera: Ichneumonidae). Zoological Journal of the Linnean Society, 177(3), 541-557. https://doi.org/10.1111/zoj.12380.

Kraaijeveld, A. R., & Godfray, H. C. J. (1997). Trade-off between parasitoid resistance and larval competitive. Nature, 389, 278-280. https://doi.org/10.1038/38483.

Lefèvre, T., De Roode, J. C., Kacsoh, B. Z., & Schlenke, T. A. (2012). Defence strategies against a parasitoid wasp in Drosophila: Fight or flight? Biology Letters, 8(2), 230-233. https://doi.org/10.1098/rsbl.2011.0725.

Lendemer, J., Thiers, B., Monfils, A. K., Zaspel, J., Ellwood, E. R., Bentley, A., LeVan, K., Bates, J., Jennings, D., Contreras, D., Lagomarsino, L., Mabee, P., Ford, L. S., Guralnick, R., Gropp, R. E., Revelez, M., Cobb, N., Seltmann, K., & Aime, M. C. (2020). The extended specimen network: A strategy to enhance US biodiversity collections, promote research and education. BioScience, 70(1), 23-30. https://doi.org/10.1093/biosci/biz140.

Lin, C. P., & Danforth, B. N. (2004). How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution, 30(3), 686-702. https://doi.org/10.1016/S1055-7903(03)00241-0.

Lin, X., Stur, E., & Ekrem, T. (2015). Exploring genetic divergence in a species-rich genus using 2790 DNA barcodes. PLoS One, 10(9), e0138993. https://doi.org/10.1371/journal.pone.0138993.

Littlefair, J. E., Clare, E. L., & Naaum, A. (2016). Barcoding the food chain: From Sanger to high-throughput sequencing1. Genome, 59(11), 946-958. https://doi.org/10.1139/gen-2016-0028.

Lue, C.-H., Borowy, D., Buffington, M. L., & Leips, J. (2018). Geographic and seasonal variation in species diversity and community composition of frugivorous Drosophila (Diptera: Drosophilidae) and their Leptopilina (Hymenoptera: Figitidae) parasitoids. Environmental Entomology, 47(5), 1096-1106. https://doi.org/10.1093/ee/nvy114.

Lue, C.-H., Driskell, A. C., Leips, J., & Buffington, M. L. (2016). Review of the genus Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern United States, including three newly described species. Journal of Hymenoptera Research, 53, 35-76. https://doi.org/10.3897/jhr.53.10369.

Meier, R., Blaimer, B., Buenaventura, E., Hartop, E., von Thomas, R., Srivathsan, A., & Yeo, D. (2021). A re-analysis of the data in Sharkey et al,A re-analysis of the data in Sharkey. bioRxiv. https://doi.org/10.1101/2021.04.28.441626

Meiklejohn, K. A., Damaso, N., & Robertson, J. M. (2019). Assessment of BOLD and GenBank - Their accuracy and reliability for the identification of biological materials. PLoS One, 14(6), e0217084. https://doi.org/10.1371/journal.pone.0217084.

Melk, J. P., & Govind, S. (1999). Developmental analysis of Ganaspis xanthopoda, a larval parasitoid of Drosophila melanogaster. Journal of Experimental Biology, 202, 1885-1896. https://doi.org/10.1242/jeb.202.14.1885.

Miller, S. E., Hausmann, A., Hallwachs, W., & Janzen, D. H. (2016). Advancing taxonomy and bioinventories with DNA barcodes. Philosophical Transactions of the Royal Society Biological Sciences, 371(1702), 20150339. https://doi.org/10.1098/rstb.2015.0339.

Mitsui, H., van Achterberg, K., Nordlander, G., & Kimura, M. T. (2007). Geographical distributions and host associations of larval parasitoids of frugivorous Drosophilidae in Japan. Journal of Natural History, 41(25-28), 1731-1738. https://doi.org/10.1080/00222930701504797.

Moreau, S. J. M., Vinchon, S., Cherqui, A., & Prévost, G. (2009). Components of Asobara venoms and their effects on hosts. Advances in Parasitology, 70, 217-232. https://doi.org/10.1016/S0065-308X(09)70008-9.

Morris, R. J., Gripenberg, S., Lewis, O. T., & Roslin, T. (2014). Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 17(3), 340-349. https://doi.org/10.1111/ele.12235.

Nappi, A. J., & Carton, Y. (2001). Immunogenetic aspects of the cellular immune response of Drosophila against parasitoids. Immunogenetics, 52(3-4), 157-164. https://doi.org/10.1007/s002510000272.

Nomano, F. Y., Kasuya, N., Matsuura, A., Suwito, A., Mitsui, H., Buffington, M. L., & Kimura, M. T. (2017). Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia. Applied Entomology and Zoology, 52(3), 429-437. https://doi.org/10.1007/s13355-017-0493-0.

Novotny, V., & Miller, S. E. (2014). Mapping and understanding the diversity of insects in the tropics: Past achievements and future directions. Austral Entomology, 53(3), 259-267. https://doi.org/10.1111/aen.12111.

O’Grady, P. M., & DeSalle, R. (2018). Phylogeny of the genus Drosophila. Genetics, 209(1), 1-25. https://doi.org/10.1534/genetics.117.300583.

Pentinsaari, M., Ratnasingham, S., Miller, S. E., & Hebert, P. D. N. (2020). BOLD and GenBank revisited - Do identification errors arise in the lab or in the sequence libraries? PLoS One, 15(4), e0231814. https://doi.org/10.1371/journal.pone.0231814.

Pfeiffer, D. G., Shrader, M. E., Wahls, J. C. E., Willbrand, B. N., Sandum, I., van der Linde, K., Laub, C. A., Mays, R. S., & Day, E. R. (2019). African Fig Fly (Diptera: Drosophilidae): Biology, expansion of geographic range, and its potential status as a soft fruit pest. Journal of Integrated Pest Management, 10(1), 1-8. https://doi.org/10.1093/jipm/pmz018.

Prendini, L., Hanner, R., & DeSalle, R. (2002). Obtaining, storing and archiving specimens and tissue samples for use in molecular studies. In R. DeSalle, G. Giribet, & W. Wheeler (Eds.), Techniques in molecular systematics and evolution. Methods and tools in biosciences and medicine. Birkhäuser. https://doi.org/10.1007/978-3-0348-8125-8_11

Prévost, G. (Ed.). (2009). Parasitoids of Drosophila. In Advances in parasitology (pp. 233-256). Elsevier. https://doi.org/10.1016/S0065-308X(09)70018-1

Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING: bold: The Barcode of Life Data System. (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355-364. https://doi.org/10.1111/j.1471-8286.2007.01678.x.

Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One, 8(7), e66213. https://doi.org/10.1371/journal.pone.0066213.

Raupach, M. J., Hendrich, L., Kuchler, S. M., Deister, F., Moriniere, J., & Gossner, M. M. (2014). Building-Up of a DNA Barcode Library for true bugs (Insecta: Hemiptera: Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLoS One, 9(9), 1-13. https://doi.org/10.1371/journal.pone.0106940.

Remsen, J., & O’Grady, P. (2002). Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Molecular Phylogenetics and Evolution, 24(2), 249-264. https://doi.org/10.1016/S1055-7903(02)00226-9.

Reumer, B. M., van Alphen, J. J. M., & Kraaijeveld, K. (2012). Occasional males in parthenogenetic populations of Asobara japonica (Hymenoptera: Braconidae): Low Wolbachia titer or incomplete coadaptation. Heredity, 108(3), 341-346. https://doi.org/10.1038/hdy.2011.82.

Rosen, D. (1986). The role of taxonomy in effective biological control programs. Agriculture, Ecosystems & Environment, 15(2-3), 121-129. https://doi.org/10.1016/0167-8809(86)90085-X.

Santos, W. G. N., Fernandes, E. C., Souza, M. M., Guimarães, J. A., & Araujo, E. L. (2016). First record of Eucoilinae (Hymenoptera: Figitidae), parasitoids of African fig fly Zaprionus indianus Gupta (Diptera: Drosophilidae), in the Caatinga biome. Semina: Ciencias Agrarias, 37(5), 3055-3058. https://doi.org/10.5433/1679-0359.2016v37n5p3055.

Schilthuizen, M., Vairappan, C. S., Slade, E. M., Mann, D. J., & Miller, J. A. (2015). Specimens as primary data: Museums and “open science”. Trends in Ecology and Evolution, 30(5), 237-238. https://doi.org/10.1016/j.tree.2015.03.002.

Schindel, D., & Miller, S. E. (2010). Provisional Nomenclature the on-ramp to taxonomic names. In A. Polaszek (Ed.), Systema nature, 250: The Linnaean Ark (pp. 109-115). CRC.

Schlenke, T. A., Morales, J., Govind, S., & Clark, A. G. (2007). Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Path, 3(10), e158. https://doi.org/10.1371/journal.ppat.0030158.

Seehausen, M. L., Ris, N., Driss, L., Racca, A., Girod, P., Warot, S., Borowiec, N., Tosevski, I., & Kenis, M. (2020). Evidence for a cryptic parasitoid species reveals its suitability as a biological control agent. Scientific Reports, 10, 19096. https://doi.org/10.1038/s41598-020-76180-5.

Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21(8), 1794-1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x.

Smith, M. A., Fernandez-Triana, J. L., Eveleigh, E., Gomez, J., Guclu, C., Hallwachs, W., Hebert, P. D. N., & Zaldivar-Riveron, A. (2013). DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20000 sequences. Molecular Ecology Resources, 13, 168-276. https://doi.org/10.1111/1755-0988.12038.

Smith, M. A., Fisher, B. L., & Hebert, P. D. N. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: The ants of Madagascar. Philosophical Transactions of the Royal Society Biological Sciences, 360(1462), 1825-1834. https://doi.org/10.1098/rstb.2005.1714.

Staniczenko, P. P. A., Reed-Tsochas, F., Lewis, O. T., Tylianakis, J. M., Albrecht, M., Coudrain, V., & Klein, A. M. (2017). Predicting the effect of habitat modification on networks of interacting species. Nature Communications, 8, 792. https://doi.org/10.1038/s41467-017-00913-w.

Tarli, V. D., Grandcolas, P., & Pellens, R. (2018). The informative value of museum collections for ecology and conservation: A comparison with target sampling in the Brazilian Atlantic forest. PLoS One, 13(11), e0205710. https://doi.org/10.1371/journal.pone.0205710.

Terry, J. C. D., Chen, J., & Lewis, O. T. (2021). Natural enemies have inconsistent impacts on the coexistence of competing species. Journal of Animal Ecology. In press. https://doi.org/10.1111/1365-2656.13534.

Thierry, M., Pardikes, N. A., Lue, C.-H., Lewis, O. L., & Hrcek, J. (2021). Experimentalwarming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism. PLoS One, 16(2), e0245029. https://doi.org/10.1371/journal.pone.0245029.

Troudet, J., Vignes-Lebbe, R., Grandcolas, P., & Legendre, F. (2018). The increasing disconnection of primary biodiversity data from specimens: How does it happen and how to handle it? Systematic Biology, 67(6), 1110-1119. https://doi.org/10.1093/sysbio/syy044.

Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445(7124), 202-205. https://doi.org/10.1038/nature05429.

Wachi, N., Nomano, F. Y., Mitsui, H., Kasuya, N., & Kimura, M. T. (2015). Taxonomy and evolution of putative thelytokous species of Leptopilina (Hymenoptera: Figitidae) from Japan, with description of two new species. Entomological Science, 18(1), 41-54. https://doi.org/10.1111/ens.12089.

Wang, X.-G., Biondi, A., & Daane, K. M. (2020). Functional responses of three candidate Asian larval parasitoids evaluated for classical biological control of Drosophila suzukii. Journal of Economic Entomology, 113(1), 73-80. https://doi.org/10.1093/jee/toz265.

Wang, X.-G., Biondi, A., Nance, A. N., Zappalà, L., Hoelmer, K. A., & Daane, K. M. (2021). Assessment of Asobara japonica as a potential biological control agent for the spotted wing drosophila, Drosophila suzukii. Entomologia Generalis, 41(1), 1-12. https://doi.org/10.1127/entomologia/2020/1100.

Wang, X.-G., Lee, J., Daane, K. M., Buffington, M., & Hoelmer, K. A. (2020). Biological control of Drosophila suzukii. CAB Reviews, 54. https://doi.org/10.1079/PAVSNNR202015054.

Weigand, H., Beermann, A. J., Čiampor, F., Costa, F. O., Csabai, Z., Duarte, S., Geiger, M. F., Grabowski, M., Rimet, F., Rulik, B., Strand, M., Szucsich, N., Weigand, A. M., Willassen, E., Wyler, S. A., Bouchez, A., Borja, A., Čiamporová-Zaťovičová, Z., Ferreira, S., … Ekrem, T. (2019). DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Science of the Total Environment, 687(15), 499-254. https://doi.org/10.1016/j.scitotenv.2019.04.247.

Xiao, J. H., Wang, N. X., Murphy, R. W., Cook, J., Jia, L. Y., & Huang, D. W. (2012). Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a fig wasp. Evolution, 66, 1907-1916. https://doi.org/10.1111/j.1558-5646.2011.01561.x.

Xie, J., Tiner, B., Vilchez, I., & Mateos, M. (2011). Effect of the Drosophila endosymbiont Spiroplasma on parasitoid wasp development and on the reproductive fitness of wasp-attacked fly survivors. Evolutionary Ecology, 25, 1065-1079. https://doi.org/10.1007/s10682-010-9453-7.

Xie, J., Winter, C., Winter, L., & Mateos, M. (2015). Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure. FEMS Microbiology Ecology, 91(2), 1-11. https://doi.org/10.1093/femsec/iu017.

Yassin, A. (2013). Phylogenetic classification of the Drosophilidae Rondani (Diptera): The role of morphology in the postgenomic era. Systematic Entomology, 38(2), 349-364. https://doi.org/10.1111/j.1365-3113.2012.00665.x.

Yassin, A., & David, J. R. (2010). Revision of the Afrotropical species of Zaprionus (Diptera, Drosophilidae), with descriptions of two new species and notes on internal reproductive structures and immature stages. ZooKeys, 51, 33-72. https://doi.org/10.3897/zookeys.51.380.

Ye, Z., Vollhardt, I. M. G., Girtler, S., Wallinger, C., Tomanovic, Z., & Traugott, M. (2017). An effective molecular approach for assessing cereal aphid-parasitoid-endosymbiont networks. Scientific Reports, 7(1), 1-12. https://doi.org/10.1038/s41598-017-02226-w.

Yu, D. S. K. (2016). Global index for Ichneumonoidea. https://web.archive.org/web/20161022093945/http:/ichneumonoidea.name/global.php. accessed October 22, 2016.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...