Prevalence and diversity of Aphanomyces astaci in cambarid crayfish of Pennsylvania: where native and introduced hosts meet
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
39844755
PubMed Central
PMC12088921
DOI
10.1017/s0031182025000022
PII: S0031182025000022
Knihovny.cz E-zdroje
- Klíčová slova
- crayfish plague, genotyping, haplogroups, host specificity, native hosts,
- MeSH
- Aphanomyces * genetika izolace a purifikace klasifikace fyziologie MeSH
- genetická variace * MeSH
- genotyp MeSH
- haplotypy MeSH
- prevalence MeSH
- severní raci * parazitologie mikrobiologie MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Pennsylvania MeSH
The crayfish plague pathogen Aphanomyces astaci (Oomycota: Saprolegniales) is native to North America but expanded with its crayfish hosts to other regions. In most of its invaded range, A. astaci haplotypes are associated with specific American crayfish, probably due to introduction bottlenecks, but haplotype diversity is higher and clear host-specific associations are lacking in its native range. However, little is known about the infection rate and load of this pathogen in North America. We investigated the distribution, prevalence and genetic variation of A. astaci in Pennsylvania (eastern USA), where multiple native and introduced crayfish species (family Cambaridae) occur. We used A. astaci-specific quantitative PCR to screen 533 individuals representing 8 crayfish species (2 Cambarus and 6 Faxonius) from 49 sites. Faxonius limosus, an American species first introduced to Europe and carrier of A. astaci genotype group E, was of particular interest. We confirmed A. astaci infections in 76% of sites in all but 1 host taxon, with the pathogen infection rate and load comparable to established populations of North American crayfish studied in Europe and Japan. Despite the absence of highly infected hosts, we genotyped A. astaci from 14 sites. We only detected 2 mitochondrial haplotypes, but nuclear markers indicated the presence of at least 4 distinct pathogen genotypes, none documented from invaded areas in Europe or Asia. Genotype group E was not detected in F. limosus, possibly due to limited spatial distribution of the original strain. Our results highlight both benefits and limitations of combining multiple pathogen genotyping methods.
Zobrazit více v PubMed
Alderman DJ (1996) Geographical spread of bacterial and fungal diseases of crustaceans. Revue Scientifique et Technique de l’Office International des Épizooties 15, 603–632. doi:10.20506/rst.15.2.943 PubMed DOI
Aydin H, Kokko H, Makkonen J, Kortet R, Kukkonen H and Jussila J (2014) The signal crayfish is vulnerable to both the As and the PsI-isolates of the crayfish plague. Knowledge and Management of Aquatic Ecosystems 413, 03. doi:10.1051/kmae/2014004 DOI
Butler E, Crigler P, Robbins G and Blair JE (2020) Preliminary survey of Aphanomyces sp. associated with native and invasive crayfish in the Lower Susquehanna watershed of South Central Pennsylvania. Journal of Freshwater Ecology 35, 223–233. doi:10.1080/02705060.2020.1779141 DOI
Caprioli R, Mrugała A, Domenico MD, Curini V, Giansante C, Cammà C and Petrusek A (2018) Aphanomyces astaci genotypes involved in recent crayfish plague outbreaks in central Italy. Diseases of Aquatic Organisms 130, 209–219. doi:10.3354/dao03275 PubMed DOI
Cerenius L, Bangyeekhun E, Keyser P, Söderhäll I and Söderhäll K (2003) Host prophenoloxidase expression in freshwater crayfish is linked to increased resistance to the crayfish plague fungus, Aphanomyces astaci. Cellular Microbiology 5, 353–357. doi:10.1046/j.1462-5822.2003.00282.x PubMed DOI
Di Domenico M, Curini V, Caprioli R, Giansante C, Mrugała A, Mojžišová M, Cammà C and Petrusek A (2021) Real-time PCR assays for rapid identification of common Aphanomyces astaci genotypes. Frontiers in Ecology and Evolution 9, 597585. doi:10.3389/fevo.2021.597585 DOI
Diéguez-Uribeondo J, García MA, Cerenius L, Kozubíková E, Ballesteros I, Windels C, Weiland J, Kator H, Söderhäll K and Martín MP (2009) Phylogenetic relationships among plant and animal parasites and saprotrophs in Aphanomyces (Oomycetes). Fungal Genetics and Biology 46, 365–376. doi:10.1016/j.fgb.2009.02.004 PubMed DOI
Diéguez-Uribeondo J, Huang T, Cerenius L and Söderhäll K (1995) Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycological Research 99, 574–578. doi:10.1016/S0953-7562(09)80716-8 DOI
Diéguez-Uribeondo J and Söderhäll K (1993) Procambarus clarkii Girard as a vector for the crayfish plague fungus, Aphanomyces astaci Schikora. Aquaculture and Fisheries Management 24, 761–765. doi:10.1111/j.1365-2109.1993.tb00655.x DOI
Durland Donahou A, Conard W, Dettloff K, Fusaro A and Sturtevant R (2024) Faxonius rusticus (Girard, 1852): U.S. Geological Survey Nonindigenous Aquatic Species Database, Gainesville, FL. Revision Date: 19 January 2024. https://nas.er.usgs.gov/queries/FactSheet.aspx?speciesID=214 (accessed 23 August 2024)
Edsman L, Nyström P, Sandström A, Stenberg M, Kokko H, Tiitinen V, Makkonen J and Jussila J (2015) Eroded swimmeret syndrome in female crayfish Pacifastacus leniusculus associated with Aphanomyces astaci and Fusarium spp. infections. Diseases of Aquatic Organisms 112, 219–228. doi:10.3354/dao02811 PubMed DOI
Filipová L, Lieb DA, Grandjean F and Petrusek A (2011) Haplotype variation in the spiny-cheek crayfish Orconectes limosus: Colonization of Europe and genetic diversity of native stocks. Journal of the North American Benthological Society 30, 871–881. doi:10.1899/10-130.1 DOI
Gherardi F (2006) Crayfish invading Europe: The case study of Procambarus clarkii. Marine and Freshwater Behaviour and Physiology 39, 175–191. doi:10.1080/10236240600869702 DOI
Grandjean F, Roques J, Delaunay C, Petrusek A, Becking T and Collas M (2017) Status of Pacifastacus leniusculus and its role in recent crayfish plague outbreaks in France: Improving distribution and crayfish plague infection patterns. Aquatic Invasions 12, 541–549. doi:10.3391/ai.2017.12.4.10 DOI
Grandjean F, Vrålstad T, Diéguez-Uribeondo J, Jelić M, Mangombi J, Delaunay C, Filipová L, Rezinciuc S, Kozubíková-Balcarová E, Guyonnet D, Viljamaa-Dirks S and Petrusek A (2014) Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues. Veterinary Microbiology 170, 317–324. doi:10.1016/j.vetmic.2014.02.020 PubMed DOI
Henttonen P and Huner JV (1999) The introduction of alien species of crayfish in Europe: A historical introduction. In Gherardi F (ed.), Crayfish in Europe as Alien Species: How to Make the Best of a Bad Situation? Crustacean Issues 11. Rotterdam, The Netherlands: A.A. Balkema, 13–22.
Holdich DM, Reynolds JD, Souty-Grosset C and Sibley PJ (2009) A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowledge and Management of Aquatic Ecosystems 394–395, 11. doi:10.1051/kmae/2009025 DOI
Huang T, Cerenius L and Söderhäll K (1994) Analysis of genetic diversity in the crayfish plague fungus Aphanomyces astaci by random amplification of polymorphic DNA. Aquaculture 126, 1–9. doi:10.1016/0044-8486(94)90243-7 DOI
James J, Mrugała A, Oidtmann B, Petrusek A and Cable J (2017) Apparent interspecific transmission of Aphanomyces astaci from invasive signal to virile crayfish in a sympatric wild population. Journal of Invertebrate Pathology 145, 68–71. doi:10.1016/j.jip.2017.02.003 PubMed DOI
Jussila J, Tiitinen V, Edsman L, Kokko H and Fotedar R (2016) Signal crayfish in Lake Saimaa could be maladapted to the local conditions due to Aphanomyces astaci infection: A seven-year study. Freshwater Crayfish 22, 53–60. doi:10.5869/fc.2016.v22-1.53 DOI
Kaldre K, Paaver T, Hurt M and Grandjean F (2017) First records of the non-indigenous signal crayfish (Pacifastacus leniusculus) and its threat to noble crayfish (Astacus astacus) populations in Estonia. Biological Invasions 19, 2771–2776. doi:10.1007/s10530-017-1496-z DOI
Kouba A, Petrusek A and Kozák P (2014) Continental-wide distribution of crayfish species in Europe: Update and maps. Knowledge and Management of Aquatic Ecosystems 413, 05. doi:10.1051/kmae/2014007 DOI
Kozubíková E, Petrusek A, Ďuriš Z, Martín MP, Diéguez-Uribeondo J and Oidtmann B (2008) The old menace is back: Recent crayfish plague outbreaks in the Czech Republic. Aquaculture 274, 208–217. doi:10.1016/j.aquaculture.2007.11.015 DOI
Kozubíková E, Viljamaa-Dirks S, Heinikainen S and Petrusek A (2011a) Spiny-cheek crayfish Orconectes limosus carry a novel genotype of the crayfish plague pathogen Aphanomyces astaci. Journal of Invertebrate Pathology 108, 214–216. doi:10.1016/j.jip.2011.08.002 PubMed DOI
Kozubíková E, Vrålstad T, Filipová L and Petrusek A (2011b) Re-examination of the prevalence of Aphanomyces astaci in North American crayfish populations in Central Europe by TaqMan MGB real-time PCR. Diseases of Aquatic Organisms 97, 113–125. doi:10.3354/dao02411 PubMed DOI
Kozubíková-Balcarová E, Beran L, Ďuriš Z, Fischer D, Horká I, Svobodová J and Petrusek A (2014) Status and recovery of indigenous crayfish populations after recent crayfish plague outbreaks in the Czech Republic. Ethology Ecology & Evolution 26, 299–319. doi:10.1080/03949370.2014.897652 DOI
Kozubíková-Balcarová E, Koukol O, Martín MP, Svoboda J, Petrusek A and Diéguez-Uribeondo J (2013) The diversity of oomycetes on crayfish: Morphological vs. molecular identification of cultures obtained while isolating the crayfish plague pathogen. Fungal Biology 117, 682–691. doi:10.1016/j.funbio.2013.07.005 PubMed DOI
Laffitte M, Mojžišová M, Delaunay C, Collas M, Petrusek A and Grandjean F (2024) Prevalence of the crayfish plague pathogen in red swamp crayfish populations in western France: How serious is the risk for the native white-clawed crayfish? Journal of Invertebrate Pathology 205, 108128. doi:10.1016/j.jip.2024.108128 PubMed DOI
Lieb DA, Bouchard RW and Carline RF (2011a) Crayfish fauna of southeastern Pennsylvania: Distributions, ecology, and changes over the last century. Journal of Crustacean Biology 31, 166–178. doi:10.1651/10-3287.1 DOI
Lieb DA, Bouchard RW, Carline RF, Nuttall TR, Wallace JR and Burkholder CL (2011b) Conservation and management of crayfishes: Lessons from Pennsylvania. Fisheries 36, 489–507. doi:10.1080/03632415.2011 DOI
Lieb DA, Carline RF, Rosenberger JL and Mengel VM (2008) The discovery and ecology of a member of the Cambarus acuminatus complex (Decapoda: Cambaridae) in Valley Creek, southeastern Pennsylvania. Journal of Crustacean Biology 28, 439–450. doi:10.1651/07-2877R.1 DOI
Maguire I, Jelić M, Klobučar G, Delpy M, Delaunay C and Grandjean F (2016) Prevalence of the pathogen Aphanomyces astaci in freshwater crayfish populations in Croatia. Diseases of Aquatic Organisms 118, 45–53. doi:10.3354/dao02955 PubMed DOI
Makkonen J, Jussila J, Panteleit J, Keller NS, Schrimpf A, Theissinger K, Kortet R, Martín-Torrijos L, Sandoval-Sierra JV, Diéguez-Uribeondo J and Kokko H (2018) MtDNA allows the sensitive detection and haplotyping of the crayfish plague disease agent Aphanomyces astaci showing clues about its origin and migration. Parasitology 145, 1210–1218. doi:10.1017/S0031182018000227 PubMed DOI
Makkonen J, Kokko H, Gökmen G, Ward J, Umek J, Kortet R, Petrusek A and Jussila J (2019) The signal crayfish (Pacifastacus leniusculus) in Lake Tahoe (USA) hosts multiple Aphanomyces species. Journal of Invertebrate Pathology 166, 107218. doi:10.1016/j.jip.2019.107218 PubMed DOI
Martínez-Ríos M, Martín-Torrijos L and Diéguez-Uribeondo J (2023) Protocols for studying the crayfish plague pathogen, Aphanomyces astaci, and its host-pathogen interactions. Journal of Invertebrate Pathology 201, 108018. doi:10.1016/j.jip.2023.108018 PubMed DOI
Martín-Torrijos L, Correa-Villalona AJ, Azofeifa-Solano JC, Villalobos-Rojas F, Wehrtmann IS and Diéguez-Uribeondo J (2021a) First detection of the crayfish plague pathogen Aphanomyces astaci in Costa Rica: European mistakes should not be repeated. Frontiers in Ecology and Evolution 9, 623814. doi:10.3389/fevo.2021.623814 DOI
Martín-Torrijos L, Hernández-Pérez A, Monroy-López JF and Diéguez-Uribeondo J (2023) Aphanomyces astaci in Mexico: A new haplotype from dwarf crayfish Cambarellus montezumae. Journal of Invertebrate Pathology 201, 108000. doi:10.1016/j.jip.2023.108000 PubMed DOI
Martín-Torrijos L, Kawai T, Makkonen J, Jussila J, Kokko H and Diéguez-Uribeondo J (2018) Crayfish plague in Japan: A real threat to the endemic Cambaroides japonicus. PLoS One 13, e0195353. doi:10.1371/journal.pone.0195353 PubMed DOI PMC
Martín-Torrijos L, Kokko H, Makkonen J, Jussila J and Diéguez-Uribeondo J (2019) Mapping 15 years of crayfish plague in the Iberian Peninsula: The impact of two invasive species on the endangered native crayfish. PLoS One 14, e0219223. doi:10.1371/journal.pone.0219223 PubMed DOI PMC
Martín-Torrijos L, Martínez-Ríos M, Casabella-Herrero G, Adams SB, Jackson CR and Diéguez-Uribeondo J (2021b) Tracing the origin of the crayfish plague pathogen Aphanomyces astaci to the Southeastern United States. Scientific Reports 11, 9332. doi:10.1038/s41598-021-88704-8 PubMed DOI PMC
Minardi D, Studholme DJ, van der Giezen M, Pretto T and Oidtmann B (2018) New genotyping method for the causative agent of crayfish plague (Aphanomyces astaci) based on whole genome data. Journal of Invertebrate Pathology 156, 6–13. doi:10.1016/j.jip.2018.06.002 PubMed DOI
Mojžišová M, Mrugała A, Kozubíková-Balcarová E, Vlach P, Svobodová J, Kouba A and Petrusek A (2020) Crayfish plague in Czechia: Outbreaks from novel sources and testing for chronic infections. Journal of Invertebrate Pathology 173, 107390. doi:10.1016/j.jip.2020.107390 PubMed DOI
Mojžišová M, Svobodová J, Kozubíková-Balcarová E, Štruncová E, Stift R, Bílý M, Kouba A and Petrusek A (2022) Long-term changes in the prevalence of the crayfish plague pathogen and its genotyping in invasive crayfish species in Czechia. NeoBiota 74, 105–127. doi:10.3897/neobiota.74.79087 DOI
Mojžišová M, Weiperth A, Gebauer R, Laffitte M, Patoka J, Grandjean F, Kouba A and Petrusek A (2024) Diversity and distribution of Aphanomyces astaci in a European hotspot of ornamental crayfish introductions. Journal of Invertebrate Pathology 202, 108040. doi:10.1016/j.jip.2023.108040 PubMed DOI
Mrugała A, Kawai T, Kozubíková‐Balcarová E and Petrusek A (2017) Aphanomyces astaci presence in Japan: A threat to the endemic and endangered crayfish species Cambaroides japonicus? Aquatic Conservation: Marine and Freshwater Ecosystems 27, 103–114. doi:10.1002/aqc.2674 DOI
Oidtmann B, Geiger S, Steinbauer P, Culas A and Hoffmann R (2006) Detection of Aphanomyces astaci in North American crayfish by polymerase chain reaction. Diseases of Aquatic Organisms 72, 53–64. doi:10.3354/dao072053 PubMed DOI
Panteleit J, Horvath T, Jussila J, Makkonen J, Perry W, Schulz R, Theissinger K and Schrimpf A (2019) Invasive rusty crayfish (Faxonius rusticus) populations in North America are infected with the crayfish plague disease agent (Aphanomyces astaci). Freshwater Science 38, 425–433. doi:10.1086/703417 DOI
Panteleit J, Keller NS, Diéguez-Uribeondo J, Makkonen J, Martín-Torrijos L, Patrulea V, Pîrvu M, Preda C, Schrimpf A and Pârvulescu L (2018) Hidden sites in the distribution of the crayfish plague pathogen Aphanomyces astaci in Eastern Europe: Relicts of genetic groups from older outbreaks? Journal of Invertebrate Pathology 157, 117–124. doi:10.1016/j.jip.2018.05.006 PubMed DOI
Peiró D, Almerão M, Delaunay C, Jussila J, Makkonen J, Bouchon D, Araujo P and Souty-Grosset C (2016) First detection of the crayfish plague pathogen Aphanomyces astaci in South America: A high potential risk to native crayfish. Hydrobiologia 781, 181–190. doi:10.1007/s10750-016-2841-4 DOI
R Core Team (2024) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rezinciuc S, Sandoval-Sierra JV, Oidtmann B and Diéguez-Uribeondo J (2015) The biology of crayfish plague pathogen Aphanomyces astaci. Current answers to most frequent questions. In Kawai T, Faulkes Z and Scholtz G (eds). Freshwater Crayfish: A Global Overview. Boca Raton, FL, USA: CRC Press. 182–204.
Schikora F (1916) Die Wiederbevölkerung der Deutschen Gewässer mit Krebsen. Emil Hübner Verlag: Bautzen, Germany.
Stevenson M, and Sergeant E (2024) epiR: Tools for the analysis of epidemiological data. R package version 2.0.75. https://CRAN.R-project.org/package=epiR (accessed 10 August 2024).
Strand DA, Jinnerot T, Aspán A, Viljamaa-Dirks S, Heinikainen S, Rolén E and Vrålstad T (2023) Molecular detection of Aphanomyces astaci – An improved species specific qPCR assay. Journal of Invertebrate Pathology 201, 108008. doi:10.1016/j.jip.2023.108008 PubMed DOI
Svoboda J, Mrugała A, Kozubíková-Balcarová E and Petrusek A (2017) Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: A review. Journal of Fish Diseases 40, 127–140. doi:10.1111/jfd.12472 PubMed DOI
Svoboda J, Strand DA, Vrålstad T, Grandjean F, Edsman L, Kozák P, Kouba A, Fristad RF, Bahadir Koca S and Petrusek A (2014) The crayfish plague pathogen can infect freshwater-inhabiting crabs. Freshwater Biology 59, 918–929. doi:10.1111/fwb.12315 DOI
Swecker CD, Jones TD, Kilian JV and Roberson LF (2010) Key to the Crayfish of Maryland. Maryland Department of Natural Resources: Annapolis, MD, USA.
Thoma RF (2022) A Naturalist’s Guide to the Crayfish of Ohio. Ohio Biological Survey: Columbus, OH, USA.
Tilmans M, Mrugała A, Svoboda J, Engelsma MY, Petie M, Soes DM, Nutbeam-Tuffs S, Oidtmann B, Roessink I and Petrusek A (2014) Survey of the crayfish plague pathogen presence in the Netherlands reveals a new Aphanomyces astaci carrier. Journal of Invertebrate Pathology 120, 74–79. doi:10.1016/j.jip.2014.06.002 PubMed DOI
Ungureanu E, Mojžišová M, Tangerman M, Ion MC, Pârvulescu L and Petrusek A (2020) The spatial distribution of Aphanomyces astaci genotypes across Europe: Introducing the first data from Ukraine. Freshwater Crayfish 25, 77–87. doi:10.5869/fc.2020.v25-1.077 DOI
Viljamaa-Dirks S and Heinikainen S (2019) A tentative new species Aphanomyces fennicus sp. nov. interferes with molecular diagnostic methods for crayfish plague. Journal of Fish Diseases 42, 413–422. doi:10.1111/jfd.12955 PubMed DOI
Vrålstad T, Knutsen AK, Tengs T and Holst-Jensen A (2009) A quantitative TaqMan® MGB real-time polymerase chain reaction based assay for detection of the causative agent of crayfish plague Aphanomyces astaci. Veterinary Microbiology 137, 146–155. doi:10.1016/j.vetmic.2008.12.022 PubMed DOI
Vrålstad T, Strand DA, Grandjean F, Kvellestad A, Håstein T, Knutsen AK, Taugbøl T and Skaar I (2014) Molecular detection and genotyping of Aphanomyces astaci directly from preserved crayfish samples uncovers the Norwegian crayfish plague disease history. Veterinary Microbiology 173, 66–75. doi:10.1016/j.vetmic.2014.07.008 PubMed DOI
Williams BW, Loughman ZJ, and Lieb DA (2020) Taxonomy and Conservation Status of Cambarus (Puncticambarus) sp. in Pennsylvania. Final Report for State Wildlife Grant F16AF01305, submitted to the Pennsylvania Fish and Boat Commission, Harrisburg, PA, USA.