Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education) in the frames of the project "Modular platform for autonomous chass
PubMed
39861241
PubMed Central
PMC11769343
DOI
10.3390/polym17020168
PII: polym17020168
Knihovny.cz E-zdroje
- Klíčová slova
- computed tomography, finite element modeling (FEM), hybrid composite, interlaminar shear strength (ILSS), mechanical properties, tensile test,
- Publikační typ
- časopisecké články MeSH
This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized. The advantage of which would be the presence of similar mechanical properties as those of composites made from synthetic fibers along with a reduction in the overall weight of components, leading to much more eco-friendly vehicles. Finite element simulations (FEM) of mechanical properties were performed using ANSYS. The FEM simulations and analysis were performed using standards as required. Subsequently, actual beams/frames with a defined geometry were fabricated for applications in automotive body construction. The tensile performance of such frames was also simulated using ANSYS-based models and was experimentally verified. A correlation with the results of the FEM simulations of mechanical properties was established. The maximum tensile strength of 415 MPa was found for sample 1: G-E (glass-epoxy composite) and the minimum strength of 146 MPa was found for sample 2: F-G-E (G-4) (flax-glass-epoxy composite). The trends were similar, as obtained by simulation using ANSYS. A comparison of the results showed the accuracy of the numerical simulation and experimental specimens with a maximum error of about 8.05%. The experimental study of the tensile properties of polymer matrix composites was supplemented with interlaminar shear strength, and a high accuracy was found. Further, the maximum interlaminar shear strength (ILSS) of 18.5 MPa was observed for sample 1: G-E and the minimum ILSS of 17.0 MPa was observed for sample 2: F-G-E (G-4). The internal fractures were analyzed using a computer tomography analyzer (CTAn). Sample 2: F-G-E (G-4) showed significant interlaminar cracking, while sample 1: G-E showed fiber failure through the cross section rather than interlaminar failure. The results indicate a practical solution of a polymer composite frame as a replacement for existing heavier components in a car, thus helping towards weight reduction and fuel efficiency.
Zobrazit více v PubMed
Liu Q., Lin Y., Zong Z., Sun G., Li Q. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 2012;97:231–238. doi: 10.1016/j.compstruct.2012.09.052. DOI
Mishra R.K., Behera B.K., Chandan V., Nazari S., Muller M. Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. Polymers. 2022;14:4108. doi: 10.3390/polym14194108. PubMed DOI PMC
Vijayan D.S., Sivasuriyan A., Devarajan P., Stefańska A., Wodzyński Ł., Koda E. Carbon Fibre-Reinforced Polymer (CFRP) Composites in Civil Engineering Application—A Comprehensive Review. Buildings. 2023;13:1509. doi: 10.3390/buildings13061509. DOI
Hadăr A., Baciu F., Voicu A.-D., Vlăsceanu D., Tudose D.-I., Adetu C. Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads. Polymers. 2022;14:3213. doi: 10.3390/polym14153213. PubMed DOI PMC
Petrů M., Novák O. Finite Element Method-Simulation, Numerical Analysis and Solution Techniques. InTech; Rijeka, Croatia: 2018. FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites. DOI
Ng S.P., Tse P.C., Lau K.J. Numerical and experimental determination of in-plane elastic properties of 2/2 twill weave fabric composites. Compos. Part B Eng. 1998;29:735–744. doi: 10.1016/S1359-8368(98)00025-0. DOI
Ekuase O.A., Anjum N., Eze V.O., Okoli O.I. A Review on the Out-of-Autoclave Process for Composite Manufacturing. J. Compos. Sci. 2022;6:172. doi: 10.3390/jcs6060172. DOI
Huang X. Fabrication and Properties of Carbon Fibers. Materials. 2009;2:2369–2403. doi: 10.3390/ma2042369. DOI
Vandeurzen P., Ivens J., Verpoest I. A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis. Compos. Sci. Technol. 1996;56:1303–1315. doi: 10.1016/S0266-3538(96)00092-9. DOI
Xiong X., Yang T., Mishra R., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2018;47:1998–2013. doi: 10.1177/1528083717716167. DOI
Thwe M.M., Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003;63:375–387. doi: 10.1016/S0266-3538(02)00225-7. DOI
Jacob M., Joseph S., Pothan L.A., Thomas S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos. Interfaces. 2005;12:95–124. doi: 10.1163/1568554053542115. DOI
Mishra R. Drape behavior of 3D woven glass-epoxy composites. Polym. Compos. 2016;37:472–480. doi: 10.1002/pc.23202. DOI
Burgani T.d.S., Alaie S., Tehrani M. Modeling Flexural Failure in Carbon-Fiber-Reinforced Polymer Composites. J. Compos. Sci. 2022;6:33. doi: 10.3390/jcs6020033. DOI
Mishra R., Behera B.K., Militky J. Impact simulation of three-dimensional woven kevlar-epoxy composites: A review. J. Ind. Text. 2016;45:978–994. doi: 10.1177/1528083714550056. DOI
Behera B.K., Pattanayak A.K., Mishra R. Prediction of Fabric Drape Behaviour using Finite Element Method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI
Shubhra Q.T.H., Alam A.K.M.M., Quaiyyum M.A. Mechanical properties of polypropylene composites. J. Thermoplast. Compos. Mater. 2013;26:362–391. doi: 10.1177/0892705711428659. DOI
Tsai K.-H., Chiu C.-H., Wu T.-H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Compos. Sci. Technol. 2000;60:241–248. doi: 10.1016/S0266-3538(99)00120-7. DOI
Suriani M.J., Ilyas R.A., Zuhri M.Y.M., Khalina A., Sultan M.T.H., Sapuan S.M., Ruzaidi C.M., Wan F.N., Zulkifli F., Harussani M.M., et al. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers. 2021;13:3514. doi: 10.3390/polym13203514. PubMed DOI PMC
Wagh J.P., Malagi R.R., Madgule M. Investigative studies on natural fiber reinforced composites for automotive bumper beam applications. J. Reinf. Plast. Compos. 2024 doi: 10.1177/07316844241260764. DOI
Bidadi J., Miandowab H.H., Googarchin H.S., Akhavan-Safar A., da Silva L.F.M. Experimental and numerical investigation on the crashworthiness performance of double hat-section Al-CFRP beam subjected to quasi-static bending test. Polym. Compos. 2024;45:5656–5674. doi: 10.1002/pc.28155. DOI
Bidadi J., Googarchin H.S., Akhavan-Safar A., Carbas R.J.C., da Silva L.F.M. Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Appl. Sci. 2023;13:12879. doi: 10.3390/app132312879. DOI
Bidadi J., Arabha M., Googarchin H.S. Adhesive bonding in automotive hybrid multi-cell square tubes: Experimental and numerical investigation on quasi-static axial crashworthiness performance. Int. J. Adhes. Adhes. 2024;135:103832. doi: 10.1016/j.ijadhadh.2024.103832. DOI
Jamshaid H., Ali H., Mishra R.K., Nazari S., Chandan V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials. 2023;16:6905. doi: 10.3390/ma16216905. PubMed DOI PMC
Chandan V., Mishra R.K., Kolar V., Muller M., Hrabe P. Green hybrid composites partially reinforced with flax woven fabric and coconut shell waste-based micro-fillers. Ind. Crop. Prod. 2024;222:119948. doi: 10.1016/j.indcrop.2024.119948. DOI
Bachtiar D., Sapuan S.M., Hamdan M.M. Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. Int. J. Auto. Mech. Eng. 2010;1:79–90. doi: 10.15282/ijame.1.2010.7.0007. DOI
Nurazzi N.M., Asyraf M.R.M., Fatimah Athiyah S., Shazleen S.S., Rafiqah S.A., Harussani M.M., Kamarudin S.H., Razman M.R., Rahmah M., Zainudin E.S., et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers. 2021;13:2170. doi: 10.3390/polym13132170. PubMed DOI PMC
Lee C.H., Khalina A., Nurazzi N.M., Norli A., Harussani M.M., Rafiqah S., Aisyah H.A., Ramli N. The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers. 2021;13:1390. doi: 10.3390/polym13091390. PubMed DOI PMC
Suriani M.J., Zainudin H.A., Ilyas R.A., Petrů M., Sapuan S.M., Ruzaidi C.M., Mustapha R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers. 2021;13:1532. doi: 10.3390/polym13091532. PubMed DOI PMC
Kalaprasad G., Thomas S., Pavithran C., Neelakantan N.R., Balakrishnan S. Hybrid Effect in the Mechanical Properties of Short Sisal/Glass Hybrid Fiber Reinforced Low Density Polyethylene Composites. J. Reinf. Plast. Compos. 1996;15:48–73. doi: 10.1177/073168449601500104. DOI
Rudov-Clark S., Mouritz A. Tensile fatigue properties of a 3D orthogonal woven composite. Compos. Part A Appl. Sci. Manuf. 2008;39:1018–1024. doi: 10.1016/j.compositesa.2008.03.001. DOI
Kalaprasad G., Joseph K., Thomas S. Influence of Short Glass Fiber Addition on the Mechanical Properties of Sisal Reinforced Low Density Polyethylene Composites. J. Compos. Mater. 1997;31:509–527. doi: 10.1177/002199839703100504. DOI
Wang Y., Hu S., Sun X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022;338:127570. doi: 10.1016/j.conbuildmat.2022.127570. DOI
Xie H., Yang L., Zhang Q., Huang C., Chen M., Zhao K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022;330:127292. doi: 10.1016/j.conbuildmat.2022.127292. DOI
An H., Song Y., Liu L., Meng X. Experimental Study of the Compressive Strengths of Basalt Fiber-Reinforced Concrete after Various High-Temperature Treatments and Cooling in Open Air and Water. Appl. Sci. 2021;11:8729. doi: 10.3390/app11188729. DOI
Deng Z., Liu X., Liang N., de la Fuente A., Peng H. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines. Fibers. 2021;9:43. doi: 10.3390/fib9070043. DOI
Jani N.M., Nasif M.S., Shafiq N., Holt I. Experimental Investigation on the Effect of Varying Fiber Mix Proportion on the Mechanical and Thermal Performances of Fiber-Reinforced Self-Compacting Concrete under Hydrocarbon Fire Condition. Appl. Sci. 2020;10:4586. doi: 10.3390/app10134586. DOI
Xiong X., Yang T., Mishra R., Militky J. Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym. 2017;17:1709–1714. doi: 10.1007/s12221-016-6745-8. DOI
Dvorkin L., Bordiuzhenko O., Tekle B.H., Ribakov Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021;11:8850. doi: 10.3390/app11198850. DOI
Bakis C., Bank L.C., Brown V., Cosenza E., Davalos J.F., Lesko J.J., Triantafillou T.C. Fiber-reinforced polymer composites for construction-state-of-the-art review. J. Compos. Constr. 2002;6:73–87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73). DOI
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2014.
Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International; West Conshohocken, PA, USA: 2022.
Jiang C., Fan K., Wu F., Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fiber reinforced concrete. Mater. Des. 2014;58:187–193. doi: 10.1016/j.matdes.2014.01.056. DOI
Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI
Wei B., Cao H., Song S. Degradation of basalt fiber and glass fiber/epoxy resin composites in seawater. Corros. Sci. 2011;53:426–431. doi: 10.1016/j.corsci.2010.09.053. DOI
Ludovico M.D., Prota A., Manfredi G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010;14:541–552. doi: 10.1061/(ASCE)CC.1943-5614.0000114. DOI
Lopresto V., Leone C., Iorio I.D. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI
Kabay N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014;50:95–101. doi: 10.1016/j.conbuildmat.2013.09.040. DOI
Manikandan V., Jappes J.W., Kumar S.S., Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fiber reinforced polymer composites. Compos. Part B Eng. 2012;43:812–818. doi: 10.1016/j.compositesb.2011.11.009. DOI
Carmisciano S., Rosa I.M.D., Sarasini F., Tamburrano A., Valente M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011;32:337–342. doi: 10.1016/j.matdes.2010.06.042. DOI
Sim J., Park C. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005;36:504–512. doi: 10.1016/j.compositesb.2005.02.002. DOI
Urbanski M., Lapko A., Garbacz A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Procedia Eng. 2013;57:1183–1191. doi: 10.1016/j.proeng.2013.04.149. DOI
Colombo C., Vergani L., Burman M. Static and fatigue characterization of new basalt fiber reinforced composites. Compos. Struct. 2012;94:1165–1174. doi: 10.1016/j.compstruct.2011.10.007. DOI
Wei B., Cao H., Song S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010;31:4244–4250. doi: 10.1016/j.matdes.2010.04.009. DOI