Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties

. 2025 Jan 11 ; 17 (2) : . [epub] 20250111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39861241

Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education) in the frames of the project "Modular platform for autonomous chass

This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized. The advantage of which would be the presence of similar mechanical properties as those of composites made from synthetic fibers along with a reduction in the overall weight of components, leading to much more eco-friendly vehicles. Finite element simulations (FEM) of mechanical properties were performed using ANSYS. The FEM simulations and analysis were performed using standards as required. Subsequently, actual beams/frames with a defined geometry were fabricated for applications in automotive body construction. The tensile performance of such frames was also simulated using ANSYS-based models and was experimentally verified. A correlation with the results of the FEM simulations of mechanical properties was established. The maximum tensile strength of 415 MPa was found for sample 1: G-E (glass-epoxy composite) and the minimum strength of 146 MPa was found for sample 2: F-G-E (G-4) (flax-glass-epoxy composite). The trends were similar, as obtained by simulation using ANSYS. A comparison of the results showed the accuracy of the numerical simulation and experimental specimens with a maximum error of about 8.05%. The experimental study of the tensile properties of polymer matrix composites was supplemented with interlaminar shear strength, and a high accuracy was found. Further, the maximum interlaminar shear strength (ILSS) of 18.5 MPa was observed for sample 1: G-E and the minimum ILSS of 17.0 MPa was observed for sample 2: F-G-E (G-4). The internal fractures were analyzed using a computer tomography analyzer (CTAn). Sample 2: F-G-E (G-4) showed significant interlaminar cracking, while sample 1: G-E showed fiber failure through the cross section rather than interlaminar failure. The results indicate a practical solution of a polymer composite frame as a replacement for existing heavier components in a car, thus helping towards weight reduction and fuel efficiency.

Zobrazit více v PubMed

Liu Q., Lin Y., Zong Z., Sun G., Li Q. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos. Struct. 2012;97:231–238. doi: 10.1016/j.compstruct.2012.09.052. DOI

Mishra R.K., Behera B.K., Chandan V., Nazari S., Muller M. Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. Polymers. 2022;14:4108. doi: 10.3390/polym14194108. PubMed DOI PMC

Vijayan D.S., Sivasuriyan A., Devarajan P., Stefańska A., Wodzyński Ł., Koda E. Carbon Fibre-Reinforced Polymer (CFRP) Composites in Civil Engineering Application—A Comprehensive Review. Buildings. 2023;13:1509. doi: 10.3390/buildings13061509. DOI

Hadăr A., Baciu F., Voicu A.-D., Vlăsceanu D., Tudose D.-I., Adetu C. Mechanical Characteristics Evaluation of a Single Ply and Multi-Ply Carbon Fiber-Reinforced Plastic Subjected to Tensile and Bending Loads. Polymers. 2022;14:3213. doi: 10.3390/polym14153213. PubMed DOI PMC

Petrů M., Novák O. Finite Element Method-Simulation, Numerical Analysis and Solution Techniques. InTech; Rijeka, Croatia: 2018. FEM Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites. DOI

Ng S.P., Tse P.C., Lau K.J. Numerical and experimental determination of in-plane elastic properties of 2/2 twill weave fabric composites. Compos. Part B Eng. 1998;29:735–744. doi: 10.1016/S1359-8368(98)00025-0. DOI

Ekuase O.A., Anjum N., Eze V.O., Okoli O.I. A Review on the Out-of-Autoclave Process for Composite Manufacturing. J. Compos. Sci. 2022;6:172. doi: 10.3390/jcs6060172. DOI

Huang X. Fabrication and Properties of Carbon Fibers. Materials. 2009;2:2369–2403. doi: 10.3390/ma2042369. DOI

Vandeurzen P., Ivens J., Verpoest I. A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis. Compos. Sci. Technol. 1996;56:1303–1315. doi: 10.1016/S0266-3538(96)00092-9. DOI

Xiong X., Yang T., Mishra R., Kanai H., Militky J. Thermal and compression characteristics of aerogel-encapsulated textiles. J. Ind. Text. 2018;47:1998–2013. doi: 10.1177/1528083717716167. DOI

Thwe M.M., Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003;63:375–387. doi: 10.1016/S0266-3538(02)00225-7. DOI

Jacob M., Joseph S., Pothan L.A., Thomas S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos. Interfaces. 2005;12:95–124. doi: 10.1163/1568554053542115. DOI

Mishra R. Drape behavior of 3D woven glass-epoxy composites. Polym. Compos. 2016;37:472–480. doi: 10.1002/pc.23202. DOI

Burgani T.d.S., Alaie S., Tehrani M. Modeling Flexural Failure in Carbon-Fiber-Reinforced Polymer Composites. J. Compos. Sci. 2022;6:33. doi: 10.3390/jcs6020033. DOI

Mishra R., Behera B.K., Militky J. Impact simulation of three-dimensional woven kevlar-epoxy composites: A review. J. Ind. Text. 2016;45:978–994. doi: 10.1177/1528083714550056. DOI

Behera B.K., Pattanayak A.K., Mishra R. Prediction of Fabric Drape Behaviour using Finite Element Method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI

Shubhra Q.T.H., Alam A.K.M.M., Quaiyyum M.A. Mechanical properties of polypropylene composites. J. Thermoplast. Compos. Mater. 2013;26:362–391. doi: 10.1177/0892705711428659. DOI

Tsai K.-H., Chiu C.-H., Wu T.-H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Compos. Sci. Technol. 2000;60:241–248. doi: 10.1016/S0266-3538(99)00120-7. DOI

Suriani M.J., Ilyas R.A., Zuhri M.Y.M., Khalina A., Sultan M.T.H., Sapuan S.M., Ruzaidi C.M., Wan F.N., Zulkifli F., Harussani M.M., et al. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers. 2021;13:3514. doi: 10.3390/polym13203514. PubMed DOI PMC

Wagh J.P., Malagi R.R., Madgule M. Investigative studies on natural fiber reinforced composites for automotive bumper beam applications. J. Reinf. Plast. Compos. 2024 doi: 10.1177/07316844241260764. DOI

Bidadi J., Miandowab H.H., Googarchin H.S., Akhavan-Safar A., da Silva L.F.M. Experimental and numerical investigation on the crashworthiness performance of double hat-section Al-CFRP beam subjected to quasi-static bending test. Polym. Compos. 2024;45:5656–5674. doi: 10.1002/pc.28155. DOI

Bidadi J., Googarchin H.S., Akhavan-Safar A., Carbas R.J.C., da Silva L.F.M. Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Appl. Sci. 2023;13:12879. doi: 10.3390/app132312879. DOI

Bidadi J., Arabha M., Googarchin H.S. Adhesive bonding in automotive hybrid multi-cell square tubes: Experimental and numerical investigation on quasi-static axial crashworthiness performance. Int. J. Adhes. Adhes. 2024;135:103832. doi: 10.1016/j.ijadhadh.2024.103832. DOI

Jamshaid H., Ali H., Mishra R.K., Nazari S., Chandan V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials. 2023;16:6905. doi: 10.3390/ma16216905. PubMed DOI PMC

Chandan V., Mishra R.K., Kolar V., Muller M., Hrabe P. Green hybrid composites partially reinforced with flax woven fabric and coconut shell waste-based micro-fillers. Ind. Crop. Prod. 2024;222:119948. doi: 10.1016/j.indcrop.2024.119948. DOI

Bachtiar D., Sapuan S.M., Hamdan M.M. Flexural properties of alkaline treated sugar palm fibre reinforced epoxy composites. Int. J. Auto. Mech. Eng. 2010;1:79–90. doi: 10.15282/ijame.1.2010.7.0007. DOI

Nurazzi N.M., Asyraf M.R.M., Fatimah Athiyah S., Shazleen S.S., Rafiqah S.A., Harussani M.M., Kamarudin S.H., Razman M.R., Rahmah M., Zainudin E.S., et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers. 2021;13:2170. doi: 10.3390/polym13132170. PubMed DOI PMC

Lee C.H., Khalina A., Nurazzi N.M., Norli A., Harussani M.M., Rafiqah S., Aisyah H.A., Ramli N. The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers. 2021;13:1390. doi: 10.3390/polym13091390. PubMed DOI PMC

Suriani M.J., Zainudin H.A., Ilyas R.A., Petrů M., Sapuan S.M., Ruzaidi C.M., Mustapha R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers. 2021;13:1532. doi: 10.3390/polym13091532. PubMed DOI PMC

Kalaprasad G., Thomas S., Pavithran C., Neelakantan N.R., Balakrishnan S. Hybrid Effect in the Mechanical Properties of Short Sisal/Glass Hybrid Fiber Reinforced Low Density Polyethylene Composites. J. Reinf. Plast. Compos. 1996;15:48–73. doi: 10.1177/073168449601500104. DOI

Rudov-Clark S., Mouritz A. Tensile fatigue properties of a 3D orthogonal woven composite. Compos. Part A Appl. Sci. Manuf. 2008;39:1018–1024. doi: 10.1016/j.compositesa.2008.03.001. DOI

Kalaprasad G., Joseph K., Thomas S. Influence of Short Glass Fiber Addition on the Mechanical Properties of Sisal Reinforced Low Density Polyethylene Composites. J. Compos. Mater. 1997;31:509–527. doi: 10.1177/002199839703100504. DOI

Wang Y., Hu S., Sun X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022;338:127570. doi: 10.1016/j.conbuildmat.2022.127570. DOI

Xie H., Yang L., Zhang Q., Huang C., Chen M., Zhao K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022;330:127292. doi: 10.1016/j.conbuildmat.2022.127292. DOI

An H., Song Y., Liu L., Meng X. Experimental Study of the Compressive Strengths of Basalt Fiber-Reinforced Concrete after Various High-Temperature Treatments and Cooling in Open Air and Water. Appl. Sci. 2021;11:8729. doi: 10.3390/app11188729. DOI

Deng Z., Liu X., Liang N., de la Fuente A., Peng H. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines. Fibers. 2021;9:43. doi: 10.3390/fib9070043. DOI

Jani N.M., Nasif M.S., Shafiq N., Holt I. Experimental Investigation on the Effect of Varying Fiber Mix Proportion on the Mechanical and Thermal Performances of Fiber-Reinforced Self-Compacting Concrete under Hydrocarbon Fire Condition. Appl. Sci. 2020;10:4586. doi: 10.3390/app10134586. DOI

Xiong X., Yang T., Mishra R., Militky J. Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym. 2017;17:1709–1714. doi: 10.1007/s12221-016-6745-8. DOI

Dvorkin L., Bordiuzhenko O., Tekle B.H., Ribakov Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021;11:8850. doi: 10.3390/app11198850. DOI

Bakis C., Bank L.C., Brown V., Cosenza E., Davalos J.F., Lesko J.J., Triantafillou T.C. Fiber-reinforced polymer composites for construction-state-of-the-art review. J. Compos. Constr. 2002;6:73–87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73). DOI

Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International; West Conshohocken, PA, USA: 2014.

Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International; West Conshohocken, PA, USA: 2022.

Jiang C., Fan K., Wu F., Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fiber reinforced concrete. Mater. Des. 2014;58:187–193. doi: 10.1016/j.matdes.2014.01.056. DOI

Ayub T., Shafiq N., Nuruddin M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014;77:131–139. doi: 10.1016/j.proeng.2014.07.029. DOI

Wei B., Cao H., Song S. Degradation of basalt fiber and glass fiber/epoxy resin composites in seawater. Corros. Sci. 2011;53:426–431. doi: 10.1016/j.corsci.2010.09.053. DOI

Ludovico M.D., Prota A., Manfredi G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010;14:541–552. doi: 10.1061/(ASCE)CC.1943-5614.0000114. DOI

Lopresto V., Leone C., Iorio I.D. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B Eng. 2011;42:717–723. doi: 10.1016/j.compositesb.2011.01.030. DOI

Kabay N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014;50:95–101. doi: 10.1016/j.conbuildmat.2013.09.040. DOI

Manikandan V., Jappes J.W., Kumar S.S., Amuthakkannan P. Investigation of the effect of surface modifications on the mechanical properties of basalt fiber reinforced polymer composites. Compos. Part B Eng. 2012;43:812–818. doi: 10.1016/j.compositesb.2011.11.009. DOI

Carmisciano S., Rosa I.M.D., Sarasini F., Tamburrano A., Valente M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011;32:337–342. doi: 10.1016/j.matdes.2010.06.042. DOI

Sim J., Park C. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005;36:504–512. doi: 10.1016/j.compositesb.2005.02.002. DOI

Urbanski M., Lapko A., Garbacz A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Procedia Eng. 2013;57:1183–1191. doi: 10.1016/j.proeng.2013.04.149. DOI

Colombo C., Vergani L., Burman M. Static and fatigue characterization of new basalt fiber reinforced composites. Compos. Struct. 2012;94:1165–1174. doi: 10.1016/j.compstruct.2011.10.007. DOI

Wei B., Cao H., Song S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010;31:4244–4250. doi: 10.1016/j.matdes.2010.04.009. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...