• This record comes from PubMed

Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines

. 2025 Feb 19 ; 16 (8) : 3509-3515. [epub] 20250127

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.

See more in PubMed

Davis J. T. Gale P. A. Quesada R. Chem. Soc. Rev. 2020;49:6056–6086. doi: 10.1039/C9CS00662A. PubMed DOI

Wu X. Gilchrist A. M. Gale P. A. Chem. 2020;6:1296–1309.

Picci G. Marchesan S. Caltagirone C. Biomedicines. 2022;10:885. doi: 10.3390/biomedicines10040885. PubMed DOI PMC

Quesada R. Dutzler R. J. Cystic Fibrosis. 2020;19:S37–S41. doi: 10.1016/j.jcf.2019.10.020. PubMed DOI

Martínez-Crespo L. Valkenier H. ChemPlusChem. 2022;87:e202200266. doi: 10.1002/cplu.202200266. PubMed DOI PMC

Yang J. Yu G. Sessler J. L. Shin I. Gale P. A. Huang F. Chem. 2021;7:3256–3291.

Roy A. Talukdar P. ChemBioChem. 2021;22:2925–2940. doi: 10.1002/cbic.202100112. PubMed DOI PMC

Mondal A. Ahmad M. Mondal D. Talukdar P. Chem. Commun. 2023;59:1917–1938. doi: 10.1039/D2CC06761G. PubMed DOI

Santacroce P. V. Davis J. T. Light M. E. Gale P. A. Iglesias-Sánchez J. C. Prados P. Quesada R. J. Am. Chem. Soc. 2007;129:1886–1887. doi: 10.1021/ja068067v. PubMed DOI

Busschaert N. Elmes R. B. P. Czech D. D. Wu X. Kirby I. L. Peck E. M. Hendzel K. D. Shaw S. K. Chan B. Smith B. D. Jolliffe K. A. Gale P. A. Chem. Sci. 2014;5:3617–3626. doi: 10.1039/C4SC01629G. PubMed DOI PMC

de Jong J. Bos J. E. Wezenberg S. J. Chem. Rev. 2023;123:8530–8574. doi: 10.1021/acs.chemrev.3c00039. PubMed DOI PMC

Ahmad M. Gartland S. A. Langton M. J. Angew. Chem., Int. Ed. 2023;62:e202308842. doi: 10.1002/anie.202308842. PubMed DOI

Johnson T. G. Langton M. J. J. Am. Chem. Soc. 2023;145:27167–27184. doi: 10.1021/jacs.3c08877. PubMed DOI PMC

Lehn J. M. Chem. Soc. Rev. 2007;36:151–160. doi: 10.1039/B616752G. PubMed DOI

Corbett P. T. Leclaire J. Vial L. West K. R. Wietor J. L. Sanders J. K. M. Otto S. Chem. Rev. 2006;106:3652–3711. doi: 10.1021/cr020452p. PubMed DOI

Brachvogel R.-C. von Delius M. Chem. Sci. 2015;6:1399–1403. doi: 10.1039/C4SC03528C. PubMed DOI PMC

Santos T. Rivero D. S. Pérez-Pérez Y. Martín-Encinas E. Pasán J. Daranas A. H. Carrillo R. Angew. Chem., Int. Ed. 2021;60:18783–18791. doi: 10.1002/anie.202106230. PubMed DOI PMC

Ulrich S. Acc. Chem. Res. 2019;52:510–519. doi: 10.1021/acs.accounts.8b00591. PubMed DOI

Su D. Coste M. Diaconu A. Barboiu M. Ulrich S. J. Mater. Chem. B. 2020;8:9385–9403. doi: 10.1039/D0TB01836H. PubMed DOI

Laurent Q. Martinent R. Lim B. Pham A.-T. Kato T. López-Andarias J. Sakai N. Matile S. JACS Au. 2021;1:710–728. doi: 10.1021/jacsau.1c00128. PubMed DOI PMC

Minkenberg C. B. Li F. van Rijn P. Florusse L. Boekhoven J. Stuart M. C. A. Koper G. J. M. Eelkema R. van Esch J. H. Angew. Chem., Int. Ed. 2011;50:3421–3424. doi: 10.1002/anie.201007401. PubMed DOI

Seoane A. Brea R. J. Fuertes A. Podolsky K. A. Devaraj N. K. J. Am. Chem. Soc. 2018;140:8388–8391. doi: 10.1021/jacs.8b04557. PubMed DOI PMC

Cardona M. A. Prins L. J. Chem. Sci. 2020;11:1518–1522. doi: 10.1039/C9SC05188K. PubMed DOI PMC

Fuertes A. Juanes M. Granja J. R. Montenegro J. Chem. Commun. 2017;53:7861–7871. doi: 10.1039/C7CC02997G. PubMed DOI

Zhang Y. Qi Y. Ulrich S. Barboiu M. Ramström O. Mater. Chem. Front. 2020;4:489–506. doi: 10.1039/C9QM00598F. PubMed DOI PMC

Saggiomo V. Lüning U. Chem. Commun. 2009:3711–3713. doi: 10.1039/B902847A. PubMed DOI

Saggiomo V. Goeschen C. Herges R. Quesada R. Lüning U. Eur. J. Org Chem. 2010:2337–2343. doi: 10.1002/ejoc.201000038. DOI

Zhang C. Zhang J. Li W. Mao S. Dong Z. ChemPlusChem. 2021;86:492–495. doi: 10.1002/cplu.202000813. PubMed DOI

Shi L. Zhao W. Jiu Z. Guo J. Zhu Q. Sun Y. Zhu B. Chang J. Xin P. Angew. Chem., Int. Ed. 2024;63:e202403667. doi: 10.1002/anie.202403667. PubMed DOI

Bravin C. Hunter C. A. Chem. Sci. 2020;11:9122–9125. doi: 10.1039/D0SC03185B. PubMed DOI PMC

Bravin C. Duindam N. Hunter C. A. Chem. Sci. 2021;12:14059–14064. doi: 10.1039/D1SC04741H. PubMed DOI PMC

Wu X. Busschaert N. Wells N. J. Jiang Y.-B. Gale P. A. J. Am. Chem. Soc. 2015;137:1476–1484. doi: 10.1021/ja510063n. PubMed DOI

Dascalu A.-E. Halgreen L. Torres-Huerta A. Valkenier H. Chem. Commun. 2022;58:11103–11106. doi: 10.1039/D2CC03523E. PubMed DOI PMC

Valkenier H. Davis A. P. Acc. Chem. Res. 2013;46:2898–2909. doi: 10.1021/ar4000345. PubMed DOI

Busschaert N. Wenzel M. Light M. E. Iglesias-Hernández P. Pérez-Tomás R. Gale P. A. J. Am. Chem. Soc. 2011;133:14136–14148. doi: 10.1021/ja205884y. PubMed DOI PMC

Grauwels G. Valkenier H. Davis A. P. Jabin I. Bartik K. Angew. Chem., Int. Ed. 2019;58:6921–6925. doi: 10.1002/anie.201900818. PubMed DOI

Martinez-Crespo L. Halgreen L. Soares M. Marques I. Felix V. Valkenier H. Org. Biomol. Chem. 2021;19:8324–8337. doi: 10.1039/D1OB01279G. PubMed DOI

Karagiannidis L. E. Haynes C. J. E. Holder K. J. Kirby I. L. Moore S. J. Wells N. J. Gale P. A. Chem. Commun. 2014;50:12050–12053. doi: 10.1039/C4CC05519E. PubMed DOI

Chvojka M. Singh A. Cataldo A. Torres-Huerta A. Konopka M. Šindelář V. Valkenier H. Analysis Sensing. 2023;4:e202300044. doi: 10.1002/anse.202300044. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...