Controlling the transmembrane transport of chloride by dynamic covalent chemistry with azines
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39877820
PubMed Central
PMC11770589
DOI
10.1039/d4sc08580a
PII: d4sc08580a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Stimuli-responsive transmembrane ion transport has become a prominent area of research due to its fundamental importance in cellular processes and potential therapeutic applications. Commonly used stimuli include pH, light, and reduction or oxidation agents. This paper presents the use of dynamic covalent chemistry to activate and modulate the transmembrane transport of chloride in liposomes. An active chloride transporter was obtained in situ within the lipid bilayer by dynamic azine metathesis. The transport activity was further tuned by changing the structure of the added azines, while the dynamic covalent chemistry could be activated by lowering the pH. This dynamic covalent chemistry opens a new approach towards controlling transmembrane transport.
See more in PubMed
Davis J. T. Gale P. A. Quesada R. Chem. Soc. Rev. 2020;49:6056–6086. doi: 10.1039/C9CS00662A. PubMed DOI
Wu X. Gilchrist A. M. Gale P. A. Chem. 2020;6:1296–1309.
Picci G. Marchesan S. Caltagirone C. Biomedicines. 2022;10:885. doi: 10.3390/biomedicines10040885. PubMed DOI PMC
Quesada R. Dutzler R. J. Cystic Fibrosis. 2020;19:S37–S41. doi: 10.1016/j.jcf.2019.10.020. PubMed DOI
Martínez-Crespo L. Valkenier H. ChemPlusChem. 2022;87:e202200266. doi: 10.1002/cplu.202200266. PubMed DOI PMC
Yang J. Yu G. Sessler J. L. Shin I. Gale P. A. Huang F. Chem. 2021;7:3256–3291.
Roy A. Talukdar P. ChemBioChem. 2021;22:2925–2940. doi: 10.1002/cbic.202100112. PubMed DOI PMC
Mondal A. Ahmad M. Mondal D. Talukdar P. Chem. Commun. 2023;59:1917–1938. doi: 10.1039/D2CC06761G. PubMed DOI
Santacroce P. V. Davis J. T. Light M. E. Gale P. A. Iglesias-Sánchez J. C. Prados P. Quesada R. J. Am. Chem. Soc. 2007;129:1886–1887. doi: 10.1021/ja068067v. PubMed DOI
Busschaert N. Elmes R. B. P. Czech D. D. Wu X. Kirby I. L. Peck E. M. Hendzel K. D. Shaw S. K. Chan B. Smith B. D. Jolliffe K. A. Gale P. A. Chem. Sci. 2014;5:3617–3626. doi: 10.1039/C4SC01629G. PubMed DOI PMC
de Jong J. Bos J. E. Wezenberg S. J. Chem. Rev. 2023;123:8530–8574. doi: 10.1021/acs.chemrev.3c00039. PubMed DOI PMC
Ahmad M. Gartland S. A. Langton M. J. Angew. Chem., Int. Ed. 2023;62:e202308842. doi: 10.1002/anie.202308842. PubMed DOI
Johnson T. G. Langton M. J. J. Am. Chem. Soc. 2023;145:27167–27184. doi: 10.1021/jacs.3c08877. PubMed DOI PMC
Lehn J. M. Chem. Soc. Rev. 2007;36:151–160. doi: 10.1039/B616752G. PubMed DOI
Corbett P. T. Leclaire J. Vial L. West K. R. Wietor J. L. Sanders J. K. M. Otto S. Chem. Rev. 2006;106:3652–3711. doi: 10.1021/cr020452p. PubMed DOI
Brachvogel R.-C. von Delius M. Chem. Sci. 2015;6:1399–1403. doi: 10.1039/C4SC03528C. PubMed DOI PMC
Santos T. Rivero D. S. Pérez-Pérez Y. Martín-Encinas E. Pasán J. Daranas A. H. Carrillo R. Angew. Chem., Int. Ed. 2021;60:18783–18791. doi: 10.1002/anie.202106230. PubMed DOI PMC
Ulrich S. Acc. Chem. Res. 2019;52:510–519. doi: 10.1021/acs.accounts.8b00591. PubMed DOI
Su D. Coste M. Diaconu A. Barboiu M. Ulrich S. J. Mater. Chem. B. 2020;8:9385–9403. doi: 10.1039/D0TB01836H. PubMed DOI
Laurent Q. Martinent R. Lim B. Pham A.-T. Kato T. López-Andarias J. Sakai N. Matile S. JACS Au. 2021;1:710–728. doi: 10.1021/jacsau.1c00128. PubMed DOI PMC
Minkenberg C. B. Li F. van Rijn P. Florusse L. Boekhoven J. Stuart M. C. A. Koper G. J. M. Eelkema R. van Esch J. H. Angew. Chem., Int. Ed. 2011;50:3421–3424. doi: 10.1002/anie.201007401. PubMed DOI
Seoane A. Brea R. J. Fuertes A. Podolsky K. A. Devaraj N. K. J. Am. Chem. Soc. 2018;140:8388–8391. doi: 10.1021/jacs.8b04557. PubMed DOI PMC
Cardona M. A. Prins L. J. Chem. Sci. 2020;11:1518–1522. doi: 10.1039/C9SC05188K. PubMed DOI PMC
Fuertes A. Juanes M. Granja J. R. Montenegro J. Chem. Commun. 2017;53:7861–7871. doi: 10.1039/C7CC02997G. PubMed DOI
Zhang Y. Qi Y. Ulrich S. Barboiu M. Ramström O. Mater. Chem. Front. 2020;4:489–506. doi: 10.1039/C9QM00598F. PubMed DOI PMC
Saggiomo V. Lüning U. Chem. Commun. 2009:3711–3713. doi: 10.1039/B902847A. PubMed DOI
Saggiomo V. Goeschen C. Herges R. Quesada R. Lüning U. Eur. J. Org Chem. 2010:2337–2343. doi: 10.1002/ejoc.201000038. DOI
Zhang C. Zhang J. Li W. Mao S. Dong Z. ChemPlusChem. 2021;86:492–495. doi: 10.1002/cplu.202000813. PubMed DOI
Shi L. Zhao W. Jiu Z. Guo J. Zhu Q. Sun Y. Zhu B. Chang J. Xin P. Angew. Chem., Int. Ed. 2024;63:e202403667. doi: 10.1002/anie.202403667. PubMed DOI
Bravin C. Hunter C. A. Chem. Sci. 2020;11:9122–9125. doi: 10.1039/D0SC03185B. PubMed DOI PMC
Bravin C. Duindam N. Hunter C. A. Chem. Sci. 2021;12:14059–14064. doi: 10.1039/D1SC04741H. PubMed DOI PMC
Wu X. Busschaert N. Wells N. J. Jiang Y.-B. Gale P. A. J. Am. Chem. Soc. 2015;137:1476–1484. doi: 10.1021/ja510063n. PubMed DOI
Dascalu A.-E. Halgreen L. Torres-Huerta A. Valkenier H. Chem. Commun. 2022;58:11103–11106. doi: 10.1039/D2CC03523E. PubMed DOI PMC
Valkenier H. Davis A. P. Acc. Chem. Res. 2013;46:2898–2909. doi: 10.1021/ar4000345. PubMed DOI
Busschaert N. Wenzel M. Light M. E. Iglesias-Hernández P. Pérez-Tomás R. Gale P. A. J. Am. Chem. Soc. 2011;133:14136–14148. doi: 10.1021/ja205884y. PubMed DOI PMC
Grauwels G. Valkenier H. Davis A. P. Jabin I. Bartik K. Angew. Chem., Int. Ed. 2019;58:6921–6925. doi: 10.1002/anie.201900818. PubMed DOI
Martinez-Crespo L. Halgreen L. Soares M. Marques I. Felix V. Valkenier H. Org. Biomol. Chem. 2021;19:8324–8337. doi: 10.1039/D1OB01279G. PubMed DOI
Karagiannidis L. E. Haynes C. J. E. Holder K. J. Kirby I. L. Moore S. J. Wells N. J. Gale P. A. Chem. Commun. 2014;50:12050–12053. doi: 10.1039/C4CC05519E. PubMed DOI
Chvojka M. Singh A. Cataldo A. Torres-Huerta A. Konopka M. Šindelář V. Valkenier H. Analysis Sensing. 2023;4:e202300044. doi: 10.1002/anse.202300044. DOI