Identical Fe-N4 Sites with Different Reactivity: Elucidating the Effect of Support Curvature
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39878198
PubMed Central
PMC11826504
DOI
10.1021/acsami.4c19913
Knihovny.cz E-zdroje
- Klíčová slova
- 2D metal−organic frameworks, Fe−N4 site, adsorption, density functional theory, scanning tunneling microscopy, single atom catalysis,
- Publikační typ
- časopisecké články MeSH
Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N4 single-atom sites, where the metal-organic structure is modulated by 0.4 Å corrugation of an inert graphene/Ir(111) support. Using scanning tunneling microscopy and density functional theory, we show that the support corrugation significantly affects the reactivity of the system, as the sites above the support "valleys" bind TCNQ (tetracyanoquinodimethane) significantly stronger than the sites above the "hills". The experimental temperature stability of TCNQ varies by more than 60 °C, while computations indicate more than 0.3 eV variation of TCNQ adsorption energy across the Fe-N4 sites placed atop different regions of the corrugated graphene unit cell. The origin of this effect is steric hindrance, which plays a role whenever large molecules interact with neighboring single-atom catalyst sites or when multiple reactants coadsorb on such sites. Our work demonstrates that such effects can be quantitatively studied using model SAC systems supported on chemically inert and physically corrugated supports.
Zobrazit více v PubMed
Sun J.-F.; Xu Q.-Q.; Qi J.-L.; Zhou D.; Zhu H.-Y.; Yin J.-Z. Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustainable Chem. Eng. 2020, 8 (39), 14630–14656. 10.1021/acssuschemeng.0c04324. DOI
Kaiser S. K.; Chen Z.; Akl D. F.; Mitchell S.; Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120 (21), 11703–11809. 10.1021/acs.chemrev.0c00576. PubMed DOI
Zhu C.; Shi Q.; Feng S.; Du D.; Lin Y. Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Lett. 2018, 3, 1713–1721. 10.1021/acsenergylett.8b00640. DOI
Liu Y.; Su Y.; Quan X.; Fan X.; Chen S.; Yu H.; Zhao H.; Zhang Y.; Zhao J. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon. ACS Catal. 2018, 8 (2), 1186–1191. 10.1021/acscatal.7b02165. DOI
Ji Y.; Li Y.; Dong H.; Ding L.; Li Y. Ruthenium Single-Atom Catalysis for Electrocatalytic Nitrogen Reduction Unveiled by Grand Canonical Density Functional Theory. J. Mater. Chem. A 2020, 8 (39), 20402–20407. 10.1039/D0TA06672A. DOI
Han L.; Liu X.; Chen J.; Lin R.; Liu H.; Lü F.; Bak S.; Liang Z.; Zhao S.; Stavitski E.; Luo J.; Adzic R. R.; Xin H. L. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem., Int. Ed. 2019, 58 (8), 2321–2325. 10.1002/anie.201811728. PubMed DOI
Vilé G.; Albani D.; Nachtegaal M.; Chen Z.; Dontsova D.; Antonietti M.; López N.; Pérez-Ramírez J. A Stable Single-Site Palladium Catalyst for Hydrogenations. Angew. Chem., Int. Ed. 2015, 54 (38), 11265–11269. 10.1002/anie.201505073. PubMed DOI
Xiao M.; Zhu J.; Li G.; Li N.; Li S.; Cano Z. P.; Ma L.; Cui P.; Xu P.; Jiang G.; Jin H.; Wang S.; Wu T.; Lu J.; Yu A.; Su D.; Chen Z. A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58 (28), 9640–9645. 10.1002/anie.201905241. PubMed DOI
Guo Z.; Xie Y.; Xiao J.; Zhao Z.-J.; Wang Y.; Xu Z.; Zhang Y.; Yin L.; Cao H.; Gong J. Single-Atom Mn–N4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. J. Am. Chem. Soc. 2019, 141 (30), 12005–12010. 10.1021/jacs.9b04569. PubMed DOI
Lim T.; Jung G. Y.; Kim J. H.; Park S. O.; Park J.; Kim Y.-T.; Kang S. J.; Jeong H. Y.; Kwak S. K.; Joo S. H. Atomically Dispersed Pt–N4 Sites as Efficient and Selective Electrocatalysts for the Chlorine Evolution Reaction. Nat. Commun. 2020, 11 (1), 41210.1038/s41467-019-14272-1. PubMed DOI PMC
Chen Z.; Vorobyeva E.; Mitchell S.; Fako E.; Ortuño M. A.; López N.; Collins S. M.; Midgley P. A.; Richard S.; Vilé G.; Pérez-Ramírez J. A Heterogeneous Single-Atom Palladium Catalyst Surpassing Homogeneous Systems for Suzuki Coupling. Nat. Nanotechnol. 2018, 13 (8), 702–707. 10.1038/s41565-018-0167-2. PubMed DOI
Mitchell S.; Pérez-Ramírez J. Single Atom Catalysis: A Decade of Stunning Progress and the Promise for a Bright Future. Nat. Commun. 2020, 11 (1), 430210.1038/s41467-020-18182-5. PubMed DOI PMC
Nørskov J. K.; Bligaard T.; Logadottir A.; Bahn S.; Hansen L. B.; Bollinger M.; Bengaard H.; Hammer B.; Sljivancanin Z.; Mavrikakis M.; Xu Y.; Dahl S.; Jacobsen C. J. H. Universality in Heterogeneous Catalysis. J. Catal. 2002, 209 (2), 275–278. 10.1006/jcat.2002.3615. DOI
Medford A. J.; Vojvodic A.; Hummelshøj J. S.; Voss J.; Abild-Pedersen F.; Studt F.; Bligaard T.; Nilsson A.; Nørskov J. K. From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42. 10.1016/j.jcat.2014.12.033. DOI
Nørskov J. K.; Bligaard T.; Logadottir A.; Kitchin J. R.; Chen J. G.; Pandelov S.; Stimming U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152 (3), J2310.1149/1.1856988. DOI
di Liberto G.; Cipriano L. A.; Pacchioni G. Universal Principles for the Rational Design of Single Atom Electrocatalysts? Handle with Care. ACS Catal. 2022, 12 (10), 5846–5856. 10.1021/acscatal.2c01011. DOI
Xiao M.; Zhu J.; Li S.; Li G.; Liu W.; Deng Y.-P.; Bai Z.; Ma L.; Feng M.; Wu T.; Su D.; Lu J.; Yu A.; Chen Z. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catal. 2021, 11 (14), 8837–8846. 10.1021/acscatal.1c02165. DOI
Emken S.; Liberto G. Di.; Pacchioni G. CO2 Electroreduction on Single Atom Catalysts: Role of the Local Coordination. Electrochim. Acta 2024, 499, 14471410.1016/j.electacta.2024.144714. DOI
di Liberto G.; Cipriano L. A.; Pacchioni G. Single Atom Catalysts: What Matters Most, the Active Site or The Surrounding?. ChemCatChem 2022, 14 (19), e20220061110.1002/cctc.202200611. DOI
Vilé G.; di Liberto G.; Tosoni S.; Sivo A.; Ruta V.; Nachtegaal M.; Clark A. H.; Agnoli S.; Zou Y.; Savateev A.; Antonietti M.; Pacchioni G. Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. ACS Catal. 2022, 12 (5), 2947–2958. 10.1021/acscatal.1c05610. DOI
Wang Y.; Liang Y.; Bo T.; Meng S.; Liu M. Orbital Dependence in Single-Atom Electrocatalytic Reactions. J. Phys. Chem. Lett. 2022, 13 (25), 5969–5976. 10.1021/acs.jpclett.2c01381. PubMed DOI
Vorobyeva E.; Gerken V. C.; Mitchell S.; Sabadell-Rendón A.; Hauert R.; Xi S.; Borgna A.; Klose D.; Collins S. M.; Midgley P. A.; Kepaptsoglou D. M.; Ramasse Q. M.; Ruiz-Ferrando A.; Fako E.; Ortuño M. A.; López N.; Carreira E. M.; Pérez-Ramírez J. Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catal. 2020, 10 (19), 11069–11080. 10.1021/acscatal.0c03164. DOI
Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO Adsorption on Model Single-Atom Catalysts. Science 2021, 371 (6527), 375–379. 10.1126/science.abe5757. PubMed DOI
Jakub Z.; Kurowská A.; Herich O.; Černá L.; Kormoš L.; Shahsavar A.; Procházka P.; Čechal J. Remarkably Stable Metal–Organic Frameworks on an Inert Substrate: M-TCNQ on Graphene (M = Ni, Fe, Mn). Nanoscale 2022, 14 (26), 9507–9515. 10.1039/D2NR02017C. PubMed DOI
Jakub Z.; Shahsavar A.; Planer J.; Hrůza D.; Herich O.; Procházka P.; Čechal J. How the Support Defines Properties of 2D Metal–Organic Frameworks: Fe-TCNQ on Graphene versus Au(111). J. Am. Chem. Soc. 2024, 146 (5), 3471–3482. 10.1021/jacs.3c13212. PubMed DOI PMC
Hämäläinen S. K.; Boneschanscher M. P.; Jacobse P. H.; Swart I.; Pussi K.; Moritz W.; Lahtinen J.; Liljeroth P.; Sainio J. Structure and Local Variations of the Graphene Moiré on Ir(111). Phys. Rev. B 2013, 88 (20), 20140610.1103/PhysRevB.88.201406. DOI
Altenburg S. J.; Berndt R. Local Work Function and STM Tip-Induced Distortion of Graphene on Ir(111). New J. Phys. 2014, 16 (5), 05303610.1088/1367-2630/16/5/053036. DOI
Maccariello D.; Garnica M.; Niño M. A.; Navío C.; Perna P.; Barja S.; de Parga A. L. V.; Miranda R. Spatially Resolved, Site-Dependent Charge Transfer and Induced Magnetic Moment in TCNQ Adsorbed on Graphene. Chem. Mater. 2014, 26 (9), 2883–2890. 10.1021/cm5005467. DOI
Busse C.; Lazić P.; Djemour R.; Coraux J.; Gerber T.; Atodiresei N.; Caciuc V.; Brako R.; N’Diaye A. T.; Blügel S.; Zegenhagen J.; Michely T. Graphene on Ir(111): Physisorption with Chemical Modulation. Phys. Rev. Lett. 2011, 107 (3), 3610110.1103/PhysRevLett.107.036101. PubMed DOI
N’Diaye A. T.; Coraux J.; Plasa T. N.; Busse C.; Michely T. Structure of Epitaxial Graphene on Ir(111). New J. Phys. 2008, 10 (4), 4303310.1088/1367-2630/10/4/043033. DOI
Coraux J.; N’Diaye A. T.; Engler M.; Busse C.; Wall D.; Buckanie N.; Meyer zu Heringdorf F.-J.; van Gastel R.; Poelsema B.; Michely T. Growth of Graphene on Ir(111). New J. Phys. 2009, 11 (2), 2300610.1088/1367-2630/11/2/023006. DOI
Choi J. I. J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The Growth of Ultra-Thin Zirconia Films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26 (22), 22500310.1088/0953-8984/26/22/225003. PubMed DOI
Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI
Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 1795310.1103/PhysRevB.50.17953. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Chemical Accuracy for the van Der Waals Density Functional. J. Phys.: Condens. Matter 2009, 22 (2), 02220110.1088/0953-8984/22/2/022201. PubMed DOI
Dudarev S. L.; Botton G. A.; Savrasov S. Y.; Humphreys C. J.; Sutton A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57 (3), 150510.1103/PhysRevB.57.1505. DOI