Identical Fe-N4 Sites with Different Reactivity: Elucidating the Effect of Support Curvature

. 2025 Feb 12 ; 17 (6) : 10136-10144. [epub] 20250129

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39878198

Detailed atomic-scale understanding is a crucial prerequisite for rational design of next-generation single-atom catalysts (SACs). However, the sub-ångström precision needed for systematic studies is challenging to achieve on common SACs. Here, we present a two-dimensional (2D) metal-organic system featuring Fe-N4 single-atom sites, where the metal-organic structure is modulated by 0.4 Å corrugation of an inert graphene/Ir(111) support. Using scanning tunneling microscopy and density functional theory, we show that the support corrugation significantly affects the reactivity of the system, as the sites above the support "valleys" bind TCNQ (tetracyanoquinodimethane) significantly stronger than the sites above the "hills". The experimental temperature stability of TCNQ varies by more than 60 °C, while computations indicate more than 0.3 eV variation of TCNQ adsorption energy across the Fe-N4 sites placed atop different regions of the corrugated graphene unit cell. The origin of this effect is steric hindrance, which plays a role whenever large molecules interact with neighboring single-atom catalyst sites or when multiple reactants coadsorb on such sites. Our work demonstrates that such effects can be quantitatively studied using model SAC systems supported on chemically inert and physically corrugated supports.

Zobrazit více v PubMed

Sun J.-F.; Xu Q.-Q.; Qi J.-L.; Zhou D.; Zhu H.-Y.; Yin J.-Z. Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustainable Chem. Eng. 2020, 8 (39), 14630–14656. 10.1021/acssuschemeng.0c04324. DOI

Kaiser S. K.; Chen Z.; Akl D. F.; Mitchell S.; Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120 (21), 11703–11809. 10.1021/acs.chemrev.0c00576. PubMed DOI

Zhu C.; Shi Q.; Feng S.; Du D.; Lin Y. Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Lett. 2018, 3, 1713–1721. 10.1021/acsenergylett.8b00640. DOI

Liu Y.; Su Y.; Quan X.; Fan X.; Chen S.; Yu H.; Zhao H.; Zhang Y.; Zhao J. Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon. ACS Catal. 2018, 8 (2), 1186–1191. 10.1021/acscatal.7b02165. DOI

Ji Y.; Li Y.; Dong H.; Ding L.; Li Y. Ruthenium Single-Atom Catalysis for Electrocatalytic Nitrogen Reduction Unveiled by Grand Canonical Density Functional Theory. J. Mater. Chem. A 2020, 8 (39), 20402–20407. 10.1039/D0TA06672A. DOI

Han L.; Liu X.; Chen J.; Lin R.; Liu H.; Lü F.; Bak S.; Liang Z.; Zhao S.; Stavitski E.; Luo J.; Adzic R. R.; Xin H. L. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem., Int. Ed. 2019, 58 (8), 2321–2325. 10.1002/anie.201811728. PubMed DOI

Vilé G.; Albani D.; Nachtegaal M.; Chen Z.; Dontsova D.; Antonietti M.; López N.; Pérez-Ramírez J. A Stable Single-Site Palladium Catalyst for Hydrogenations. Angew. Chem., Int. Ed. 2015, 54 (38), 11265–11269. 10.1002/anie.201505073. PubMed DOI

Xiao M.; Zhu J.; Li G.; Li N.; Li S.; Cano Z. P.; Ma L.; Cui P.; Xu P.; Jiang G.; Jin H.; Wang S.; Wu T.; Lu J.; Yu A.; Su D.; Chen Z. A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58 (28), 9640–9645. 10.1002/anie.201905241. PubMed DOI

Guo Z.; Xie Y.; Xiao J.; Zhao Z.-J.; Wang Y.; Xu Z.; Zhang Y.; Yin L.; Cao H.; Gong J. Single-Atom Mn–N4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution. J. Am. Chem. Soc. 2019, 141 (30), 12005–12010. 10.1021/jacs.9b04569. PubMed DOI

Lim T.; Jung G. Y.; Kim J. H.; Park S. O.; Park J.; Kim Y.-T.; Kang S. J.; Jeong H. Y.; Kwak S. K.; Joo S. H. Atomically Dispersed Pt–N4 Sites as Efficient and Selective Electrocatalysts for the Chlorine Evolution Reaction. Nat. Commun. 2020, 11 (1), 41210.1038/s41467-019-14272-1. PubMed DOI PMC

Chen Z.; Vorobyeva E.; Mitchell S.; Fako E.; Ortuño M. A.; López N.; Collins S. M.; Midgley P. A.; Richard S.; Vilé G.; Pérez-Ramírez J. A Heterogeneous Single-Atom Palladium Catalyst Surpassing Homogeneous Systems for Suzuki Coupling. Nat. Nanotechnol. 2018, 13 (8), 702–707. 10.1038/s41565-018-0167-2. PubMed DOI

Mitchell S.; Pérez-Ramírez J. Single Atom Catalysis: A Decade of Stunning Progress and the Promise for a Bright Future. Nat. Commun. 2020, 11 (1), 430210.1038/s41467-020-18182-5. PubMed DOI PMC

Nørskov J. K.; Bligaard T.; Logadottir A.; Bahn S.; Hansen L. B.; Bollinger M.; Bengaard H.; Hammer B.; Sljivancanin Z.; Mavrikakis M.; Xu Y.; Dahl S.; Jacobsen C. J. H. Universality in Heterogeneous Catalysis. J. Catal. 2002, 209 (2), 275–278. 10.1006/jcat.2002.3615. DOI

Medford A. J.; Vojvodic A.; Hummelshøj J. S.; Voss J.; Abild-Pedersen F.; Studt F.; Bligaard T.; Nilsson A.; Nørskov J. K. From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42. 10.1016/j.jcat.2014.12.033. DOI

Nørskov J. K.; Bligaard T.; Logadottir A.; Kitchin J. R.; Chen J. G.; Pandelov S.; Stimming U. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152 (3), J2310.1149/1.1856988. DOI

di Liberto G.; Cipriano L. A.; Pacchioni G. Universal Principles for the Rational Design of Single Atom Electrocatalysts? Handle with Care. ACS Catal. 2022, 12 (10), 5846–5856. 10.1021/acscatal.2c01011. DOI

Xiao M.; Zhu J.; Li S.; Li G.; Liu W.; Deng Y.-P.; Bai Z.; Ma L.; Feng M.; Wu T.; Su D.; Lu J.; Yu A.; Chen Z. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catal. 2021, 11 (14), 8837–8846. 10.1021/acscatal.1c02165. DOI

Emken S.; Liberto G. Di.; Pacchioni G. CO2 Electroreduction on Single Atom Catalysts: Role of the Local Coordination. Electrochim. Acta 2024, 499, 14471410.1016/j.electacta.2024.144714. DOI

di Liberto G.; Cipriano L. A.; Pacchioni G. Single Atom Catalysts: What Matters Most, the Active Site or The Surrounding?. ChemCatChem 2022, 14 (19), e20220061110.1002/cctc.202200611. DOI

Vilé G.; di Liberto G.; Tosoni S.; Sivo A.; Ruta V.; Nachtegaal M.; Clark A. H.; Agnoli S.; Zou Y.; Savateev A.; Antonietti M.; Pacchioni G. Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. ACS Catal. 2022, 12 (5), 2947–2958. 10.1021/acscatal.1c05610. DOI

Wang Y.; Liang Y.; Bo T.; Meng S.; Liu M. Orbital Dependence in Single-Atom Electrocatalytic Reactions. J. Phys. Chem. Lett. 2022, 13 (25), 5969–5976. 10.1021/acs.jpclett.2c01381. PubMed DOI

Vorobyeva E.; Gerken V. C.; Mitchell S.; Sabadell-Rendón A.; Hauert R.; Xi S.; Borgna A.; Klose D.; Collins S. M.; Midgley P. A.; Kepaptsoglou D. M.; Ramasse Q. M.; Ruiz-Ferrando A.; Fako E.; Ortuño M. A.; López N.; Carreira E. M.; Pérez-Ramírez J. Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catal. 2020, 10 (19), 11069–11080. 10.1021/acscatal.0c03164. DOI

Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO Adsorption on Model Single-Atom Catalysts. Science 2021, 371 (6527), 375–379. 10.1126/science.abe5757. PubMed DOI

Jakub Z.; Kurowská A.; Herich O.; Černá L.; Kormoš L.; Shahsavar A.; Procházka P.; Čechal J. Remarkably Stable Metal–Organic Frameworks on an Inert Substrate: M-TCNQ on Graphene (M = Ni, Fe, Mn). Nanoscale 2022, 14 (26), 9507–9515. 10.1039/D2NR02017C. PubMed DOI

Jakub Z.; Shahsavar A.; Planer J.; Hrůza D.; Herich O.; Procházka P.; Čechal J. How the Support Defines Properties of 2D Metal–Organic Frameworks: Fe-TCNQ on Graphene versus Au(111). J. Am. Chem. Soc. 2024, 146 (5), 3471–3482. 10.1021/jacs.3c13212. PubMed DOI PMC

Hämäläinen S. K.; Boneschanscher M. P.; Jacobse P. H.; Swart I.; Pussi K.; Moritz W.; Lahtinen J.; Liljeroth P.; Sainio J. Structure and Local Variations of the Graphene Moiré on Ir(111). Phys. Rev. B 2013, 88 (20), 20140610.1103/PhysRevB.88.201406. DOI

Altenburg S. J.; Berndt R. Local Work Function and STM Tip-Induced Distortion of Graphene on Ir(111). New J. Phys. 2014, 16 (5), 05303610.1088/1367-2630/16/5/053036. DOI

Maccariello D.; Garnica M.; Niño M. A.; Navío C.; Perna P.; Barja S.; de Parga A. L. V.; Miranda R. Spatially Resolved, Site-Dependent Charge Transfer and Induced Magnetic Moment in TCNQ Adsorbed on Graphene. Chem. Mater. 2014, 26 (9), 2883–2890. 10.1021/cm5005467. DOI

Busse C.; Lazić P.; Djemour R.; Coraux J.; Gerber T.; Atodiresei N.; Caciuc V.; Brako R.; N’Diaye A. T.; Blügel S.; Zegenhagen J.; Michely T. Graphene on Ir(111): Physisorption with Chemical Modulation. Phys. Rev. Lett. 2011, 107 (3), 3610110.1103/PhysRevLett.107.036101. PubMed DOI

N’Diaye A. T.; Coraux J.; Plasa T. N.; Busse C.; Michely T. Structure of Epitaxial Graphene on Ir(111). New J. Phys. 2008, 10 (4), 4303310.1088/1367-2630/10/4/043033. DOI

Coraux J.; N’Diaye A. T.; Engler M.; Busse C.; Wall D.; Buckanie N.; Meyer zu Heringdorf F.-J.; van Gastel R.; Poelsema B.; Michely T. Growth of Graphene on Ir(111). New J. Phys. 2009, 11 (2), 2300610.1088/1367-2630/11/2/023006. DOI

Choi J. I. J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The Growth of Ultra-Thin Zirconia Films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26 (22), 22500310.1088/0953-8984/26/22/225003. PubMed DOI

Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI

Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 1795310.1103/PhysRevB.50.17953. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Chemical Accuracy for the van Der Waals Density Functional. J. Phys.: Condens. Matter 2009, 22 (2), 02220110.1088/0953-8984/22/2/022201. PubMed DOI

Dudarev S. L.; Botton G. A.; Savrasov S. Y.; Humphreys C. J.; Sutton A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57 (3), 150510.1103/PhysRevB.57.1505. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...