How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111)

. 2024 Feb 07 ; 146 (5) : 3471-3482. [epub] 20240122

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38253402

The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The dz2 center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.

Zobrazit více v PubMed

Nicks J.; Sasitharan K.; Prasad R. R. R.; Ashworth D. J.; Foster J. A. Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Adv. Funct. Mater. 2021, 31 (42), 210372310.1002/adfm.202103723. DOI

Zuo Q.; Liu T.; Chen C.; Ji Y.; Gong X.; Mai Y.; Zhou Y. Ultrathin Metal–Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution. Angew. Chem., Int. Ed. 2019, 58 (30), 10198–10203. 10.1002/anie.201904058. PubMed DOI

Li W.; Sun L.; Qi J.; Jarillo-Herrero P.; Dincă M.; Li J. High Temperature Ferromagnetism in π-Conjugated Two-Dimensional Metal-Organic Frameworks. Chem. Sci. 2017, 8 (4), 2859–2867. 10.1039/C6SC05080H. PubMed DOI PMC

Misumi Y.; Yamaguchi A.; Zhang Z.; Matsushita T.; Wada N.; Tsuchiizu M.; Awaga K. Quantum Spin Liquid State in a Two-Dimensional Semiconductive Metal–Organic Framework. J. Am. Chem. Soc. 2020, 142 (39), 16513–16517. 10.1021/jacs.0c05472. PubMed DOI

Ross R. D.; Sheng H.; Ding Y.; Janes A. N.; Feng D.; Schmidt J. R.; Segre C. U.; Jin S. Operando Elucidation of Electrocatalytic and Redox Mechanisms on a 2D Metal Organic Framework Catalyst for Efficient Electrosynthesis of Hydrogen Peroxide in Neutral Media. J. Am. Chem. Soc. 2022, 144 (34), 15845–15854. 10.1021/jacs.2c06810. PubMed DOI

Deng Q.; Hou X.; Zhong Y.; Zhu J.; Wang J.; Cai J.; Zeng Z.; Zou J.-J.; Deng S.; Yoskamtorn T.; Tsang S. C. E. 2D MOF with Compact Catalytic Sites for the One-Pot Synthesis of 2,5-Dimethylfuran from Saccharides via Tandem Catalysis. Angew. Chem., Int. Ed. 2022, 61 (34), e20220545310.1002/anie.202205453. PubMed DOI PMC

Park J.; Lee M.; Feng D.; Huang Z.; Hinckley A. C.; Yakovenko A.; Zou X.; Cui Y.; Bao Z. Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. J. Am. Chem. Soc. 2018, 140 (32), 10315–10323. 10.1021/jacs.8b06020. PubMed DOI

Thorarinsdottir A. E.; Harris T. D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120 (16), 8716–8789. 10.1021/acs.chemrev.9b00666. PubMed DOI

Écija D.; Urgel J. I.; Seitsonen A. P.; Auwärter W.; Barth J. v. Lanthanide-Directed Assembly of Interfacial Coordination Architectures-From Complex Networks to Functional Nanosystems. Acc. Chem. Res. 2018, 51 (2), 365–375. 10.1021/acs.accounts.7b00379. PubMed DOI

Dong L.; Gao Z. A. Z.; Lin N. Self-Assembly of Metal–Organic Coordination Structures on Surfaces. Prog. Surf. Sci. 2016, 91 (3), 101–135. 10.1016/j.progsurf.2016.08.001. DOI

Cui Q.; Qin G.; Wang W.; K R G.; Du A.; Sun Q. Mo-Based 2D MOF as a Highly Efficient Electrocatalyst for Reduction of N2 to NH3: A Density Functional Theory Study. J. Mater. Chem. A 2019, 7 (24), 14510–14518. 10.1039/C9TA02926E. DOI

Liu J. H.; Yang L. M.; Ganz E. Electrochemical Reduction of CO2 by Single Atom Catalyst TM-TCNQ Monolayers. J. Mater. Chem. A 2019, 7 (8), 3805–3814. 10.1039/C8TA08677J. DOI

Deng Q.; Zhao J.; Wu T.; Chen G.; Hansen H. A.; Vegge T. 2D Transition Metal–TCNQ Sheets as Bifunctional Single-Atom Catalysts for Oxygen Reduction and Evolution Reaction (ORR/OER). J. Catal. 2019, 370, 378–384. 10.1016/j.jcat.2018.12.012. DOI

Zhang L.-C.; Zhang L.; Qin G.; Zheng Q.-R.; Hu M.; Yan Q.-B.; Su G. Two-Dimensional Magnetic Metal–Organic Frameworks with the Shastry-Sutherland Lattice. Chem. Sci. 2019, 10 (44), 10381–10387. 10.1039/C9SC03816G. PubMed DOI PMC

Miner E. M.; Fukushima T.; Sheberla D.; Sun L.; Surendranath Y.; Dincă M. Electrochemical Oxygen Reduction Catalysed by Ni3(Hexaiminotriphenylene)2. Nat. Commun. 2016, 7 (1), 10942.10.1038/ncomms10942. PubMed DOI PMC

Mohammadtaheri M.; Ramanathan R.; Bansal V. Emerging Applications of Metal-TCNQ Based Organic Semiconductor Charge Transfer Complexes for Catalysis. Catal. Today. 2016, 278, 319–329. 10.1016/j.cattod.2015.11.017. DOI

Dhakshinamoorthy A.; Asiri A. M.; Garcia H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31 (41), 190061710.1002/adma.201900617. PubMed DOI

Wang Q.; Franco-Cañellas A.; Yang J.; Hausch J.; Struzek S.; Chen M.; Thakur P. K.; Gerlach A.; Duhm S.; Schreiber F. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Appl. Mater. Int. 2020, 12 (12), 14542–14551. 10.1021/acsami.9b22812. PubMed DOI

Faraggi M. N.; Jiang N.; Gonzalez-Lakunza N.; Langner A.; Stepanow S.; Kern K.; Arnau A. Bonding and Charge Transfer in Metal–Organic Coordination Networks on Au(111) with Strong Acceptor Molecules. J. Phys. Chem. C 2012, 116 (46), 24558–24565. 10.1021/jp306780n. DOI

Santhini V. M.; Wäckerlin C.; Cahlík A.; Ondráček M.; Pascal S.; Matěj A.; Stetsovych O.; Mutombo P.; Lazar P.; Siri O.; Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew. Chem., Int. Ed. 2021, 60 (1), 439–445. 10.1002/anie.202011462. PubMed DOI

Rossel F.; Brodard P.; Patthey F.; Richardson N. v; Schneider W.-D. Modified Herringbone Reconstruction on Au(111) Induced by Self-Assembled Azure A Islands. Surf. Sci. 2008, 602 (14), L115–L117. 10.1016/j.susc.2008.06.009. DOI

Otero R.; Miranda R.; Gallego J. M. A Comparative Computational Study of the Adsorption of TCNQ and F4-TCNQ on the Coinage Metal Surfaces. ACS Omega 2019, 4 (16), 16906–16915. 10.1021/acsomega.9b02154. PubMed DOI PMC

Schmid M.; Zirzlmeier J.; Steinrück H.-P.; Gottfried J. M. Interfacial Interactions of Iron(II) Tetrapyrrole Complexes on Au(111). J. Phys. Chem. C 2011, 115 (34), 17028–17035. 10.1021/jp204524s. DOI

Baber A. E.; Jensen S. C.; Iski E.; Sykes E. C. H. Extraordinary Atomic Mobility of Au(111) at 80 K: Effect of Styrene Adsorption. J. Am. Chem. Soc. 2006, 128 (48), 15384–15385. 10.1021/ja065904k. PubMed DOI

Voznyy O.; Dubowski J. J.; Yates J. T.; Maksymovych P. The Role of Gold Adatoms and Stereochemistry in Self-Assembly of Methylthiolate on Au(111). J. Am. Chem. Soc. 2009, 131 (36), 12989–12993. 10.1021/ja902629y. PubMed DOI

Mousley P. J.; Rochford L. A.; Ryan P. T. P. P.; Blowey P.; Lawrence J.; Duncan D. A.; Hussain H.; Sohail B.; Lee T.-L. L.; Bell G. R.; Costantini G.; Maurer R. J.; Nicklin C.; Woodruff D. P. Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer. J. Phys. Chem. C 2022, 126 (16), 7346–7355. 10.1021/acs.jpcc.2c01432. PubMed DOI PMC

Jakub Z.; Kurowská A.; Herich O.; Černá L.; Kormoš L.; Shahsavar A.; Procházka P.; Čechal J. Remarkably Stable Metal–Organic Frameworks on an Inert Substrate: M-TCNQ on Graphene (M = Ni, Fe, Mn). Nanoscale 2022, 14 (26), 9507–9515. 10.1039/D2NR02017C. PubMed DOI

Carlotto S.; Fuhr J. D.; Cossaro A.; Verdini A.; Casarin M.; Lingenfelder M.; Gayone J. E.; Floreano L.; Ascolani H. Stabilization of High-Spin Mn Ions in Tetra-Pyrrolic Configuration on Copper. Appl. Surf. Sci. 2021, 551, 14930710.1016/j.apsusc.2021.149307. DOI

Machaín P.; Fuhr J. D.; Schneider S.; Carlotto S.; Casarin M.; Cossaro A.; Verdini A.; Floreano L.; Lingenfelder M.; Gayone J. E.; Ascolani H. Mn–Cu Transmetalation as a Strategy for the Assembly of Decoupled Metal–Organic Networks on Sn/Cu(001) Surface Alloys. J. Phys. Chem. C 2020, 124 (35), 18993–19002. 10.1021/acs.jpcc.0c03395. DOI

Hötger D.; Carro P.; Gutzler R.; Wurster B.; Chandrasekar R.; Klyatskaya S.; Ruben M.; Salvarezza R. C.; Kern K.; Grumelli D. Polymorphism and Metal-Induced Structural Transformation in 5,5′-Bis(4-Pyridyl)(2,2′-Bispyrimidine) Adlayers on Au(111). Phys. Chem. Chem. Phys. 2018, 20 (23), 15960–15969. 10.1039/C7CP07746G. PubMed DOI

Berger R. K.; Jeindl A.; Hörmann L.; Hofmann O. T. Role of Adatoms for the Adsorption of F4TCNQ on Au(111). J. Phys. Chem. C 2022, 126 (17), 7718–7727. 10.1021/acs.jpcc.2c00994. PubMed DOI PMC

Wang Y.; Liang Y.; Bo T.; Meng S.; Liu M. Orbital Dependence in Single-Atom Electrocatalytic Reactions. J. Phys. Chem. Lett. 2022, 13 (25), 5969–5976. 10.1021/acs.jpclett.2c01381. PubMed DOI

Qiao W.; Yan S.; Jin D.; Xu X.; Mi W.; Wang D. Vertical-Orbital Band Center as an Activity Descriptor for Hydrogen Evolution Reaction on Single-Atom-Anchored 2D Catalysts. J. Phys.: Condens. Matter 2021, 33 (24), 24520110.1088/1361-648X/abe9da. PubMed DOI

Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO Adsorption on Model Single-Atom Catalysts. Science 2021, 371 (6527), 375–379. 10.1126/science.abe5757. PubMed DOI

Niesner D.; Fauster T.; Dadap J. I.; Zaki N.; Knox K. R.; Yeh P. C.; Bhandari R.; Osgood R. M.; Petrović M.; Kralj M. Trapping Surface Electrons on Graphene Layers and Islands. Phys. Rev. B 2012, 85 (8), 81402.10.1103/PhysRevB.85.081402. DOI

Derry G. N.; Kern M. E.; Worth E. H. Recommended Values of Clean Metal Surface Work Functions. J. Vac. Sci. Technol. A 2015, 33 (6), 60801.10.1116/1.4934685. DOI

Otero R.; Vázquez de Parga A. L.; Gallego J. M. Electronic, Structural and Chemical Effects of Charge-Transfer at Organic/Inorganic Interfaces. Surf. Sci. Rep. 2017, 72 (3), 105–145. 10.1016/j.surfrep.2017.03.001. DOI

Blanco-Rey M.; Sarasola A.; Nistor C.; Persichetti L.; Stamm C.; Piamonteze C.; Gambardella P.; Stepanow S.; Otrokov M. M.; Golovach V. N.; Arnau A. Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms. Molecules. 2018, 23 (4), 964.10.3390/molecules23040964. PubMed DOI PMC

Kralj M.; Pletikosić I.; Petrović M.; Pervan P.; Milun M.; N’Diaye A. T.; Busse C.; Michely T.; Fujii J.; Vobornik I. Graphene on Ir(111) Characterized by Angle-Resolved Photoemission. Phys. Rev. B 2011, 84 (7), 75427.10.1103/PhysRevB.84.075427. DOI

Romaner L.; Heimel G.; Brédas J.-L.; Gerlach A.; Schreiber F.; Johnson R. L.; Zegenhagen J.; Duhm S.; Koch N.; Zojer E. Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Phys. Rev. Lett. 2007, 99 (25), 25680110.1103/PhysRevLett.99.256801. PubMed DOI

Hwang J.; Kim E.-G.; Liu J.; Brédas J.-L.; Duggal A.; Kahn A. Photoelectron Spectroscopic Study of the Electronic Band Structure of Polyfluorene and Fluorene-Arylamine Copolymers at Interfaces. J. Phys. Chem. C 2007, 111 (3), 1378–1384. 10.1021/jp067004w. DOI

Knecht P.; Reichert J.; Deimel P. S.; Feulner P.; Haag F.; Allegretti F.; Garnica M.; Schwarz M.; Auwärter W.; Ryan P. T. P.; Lee T.-L.; Duncan D. A.; Seitsonen A. P.; Barth J. V.; Papageorgiou A. C. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew. Chem., Int. Ed. 2021, 60 (30), 16561–16567. 10.1002/anie.202104075. PubMed DOI PMC

Knecht P.; Ryan P. T. P.; Duncan D. A.; Jiang L.; Reichert J.; Deimel P. S.; Haag F.; Küchle J. T.; Allegretti F.; Lee T.-L.; Schwarz M.; Garnica M.; Auwärter W.; Seitsonen A. P.; Barth J. V.; Papageorgiou A. C. Tunable Interface of Ruthenium Porphyrins and Silver. J. Phys. Chem. C 2021, 125 (5), 3215–3224. 10.1021/acs.jpcc.0c10418. DOI

Gerbert D.; Tegeder P. Molecular Ion Formation by Photoinduced Electron Transfer at the Tetracyanoquinodimethane/Au(111) Interface. J. Phys. Chem. Lett. 2017, 8 (19), 4685–4690. 10.1021/acs.jpclett.7b01897. PubMed DOI

Deng Q.; Wu T.; Chen G.; Hansen H. A.; Vegge T. Combinatorial Selection of a Two-Dimensional 3d-TM-Tetracyanoquinodimethane (TM-TCNQ) Monolayer as a High-Activity Nanocatalyst for CO Oxidation. Phys. Chem. Chem. Phys. 2018, 20 (7), 5173–5179. 10.1039/C7CP07988E. PubMed DOI

Lv S.-Y.; Huang C.-X.; Li G.; Yang L.-M. Electrocatalytic Mechanism of N2 Reduction Reaction by Single-Atom Catalyst Rectangular TM-TCNQ Monolayers. ACS Appl. Mater. Int. 2021, 13 (25), 29641–29653. 10.1021/acsami.1c06368. PubMed DOI

Xie M.; Xiong X.; Yang L.; Shi X.; Asiri A. M.; Sun X. An Fe(TCNQ)2 Nanowire Array on Fe Foil: An Efficient Non-Noble-Metal Catalyst for the Oxygen Evolution Reaction in Alkaline Media. Chem. Commun. 2018, 54 (18), 2300–2303. 10.1039/C7CC09105B. PubMed DOI

Peng S.; Rao Y.; Huang Y.; Li T.; Li R.; Cao J.; Lee S. N-Coordinated Ir Single Atoms Anchored on Carbon Octahedrons for Catalytic Oxidation of Formaldehyde under Ambient Conditions. Catal. Sci. Technol. 2022, 12 (12), 4001–4011. 10.1039/D2CY00743F. DOI

Zhang J.; Liu P.; Wang G.; Zhang P. P.; Zhuang X. D.; Chen M. W.; Weidinger I. M.; Feng X. L. Ruthenium/Nitrogen-Doped Carbon as an Electrocatalyst for Efficient Hydrogen Evolution in Alkaline Solution. J. Mater. Chem. A 2017, 5 (48), 25314–25318. 10.1039/C7TA08764K. DOI

Kaiser S. K.; Chen Z.; Faust Akl D.; Mitchell S.; Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120 (21), 11703–11809. 10.1021/acs.chemrev.0c00576. PubMed DOI

N’Diaye A. T.; Coraux J.; Plasa T. N.; Busse C.; Michely T. Structure of Epitaxial Graphene on Ir(111). New J. Phys. 2008, 10 (4), 43033.10.1088/1367-2630/10/4/043033. DOI

Coraux J.; T N’Diaye A.; Engler M.; Busse C.; Wall D.; Buckanie N.; Meyer zu Heringdorf F.-J.; van Gastel R.; Poelsema B.; Michely T. Growth of Graphene on Ir(111). New J. Phys. 2009, 11 (2), 23006.10.1088/1367-2630/11/2/023006. DOI

Choi J. I. J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The Growth of Ultra-Thin Zirconia Films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26 (22), 22500310.1088/0953-8984/26/22/225003. PubMed DOI

Hermann K. E; van Hove M. A.. LEEDPat, Version 4.2. FHI Berlin: HBKU Hong Kong, 2014.

Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI

Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI

Klimeš J.; Bowler D. R.; Michaelides A. Chemical Accuracy for the van Der Waals Density Functional. J. Phys.: Condens. Matter 2009, 22 (2), 22201.10.1088/0953-8984/22/2/022201. PubMed DOI

Dudarev S. L.; Botton G. A.; Savrasov S. Y.; Humphreys C. J.; Sutton A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57 (3), 1505–1509. 10.1103/PhysRevB.57.1505. DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 15410410.1063/1.3382344. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI

Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Identical Fe-N4 Sites with Different Reactivity: Elucidating the Effect of Support Curvature

. 2025 Feb 12 ; 17 (6) : 10136-10144. [epub] 20250129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...