How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38253402
PubMed Central
PMC10859937
DOI
10.1021/jacs.3c13212
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The dz2 center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
Zobrazit více v PubMed
Nicks J.; Sasitharan K.; Prasad R. R. R.; Ashworth D. J.; Foster J. A. Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Adv. Funct. Mater. 2021, 31 (42), 210372310.1002/adfm.202103723. DOI
Zuo Q.; Liu T.; Chen C.; Ji Y.; Gong X.; Mai Y.; Zhou Y. Ultrathin Metal–Organic Framework Nanosheets with Ultrahigh Loading of Single Pt Atoms for Efficient Visible-Light-Driven Photocatalytic H2 Evolution. Angew. Chem., Int. Ed. 2019, 58 (30), 10198–10203. 10.1002/anie.201904058. PubMed DOI
Li W.; Sun L.; Qi J.; Jarillo-Herrero P.; Dincă M.; Li J. High Temperature Ferromagnetism in π-Conjugated Two-Dimensional Metal-Organic Frameworks. Chem. Sci. 2017, 8 (4), 2859–2867. 10.1039/C6SC05080H. PubMed DOI PMC
Misumi Y.; Yamaguchi A.; Zhang Z.; Matsushita T.; Wada N.; Tsuchiizu M.; Awaga K. Quantum Spin Liquid State in a Two-Dimensional Semiconductive Metal–Organic Framework. J. Am. Chem. Soc. 2020, 142 (39), 16513–16517. 10.1021/jacs.0c05472. PubMed DOI
Ross R. D.; Sheng H.; Ding Y.; Janes A. N.; Feng D.; Schmidt J. R.; Segre C. U.; Jin S. Operando Elucidation of Electrocatalytic and Redox Mechanisms on a 2D Metal Organic Framework Catalyst for Efficient Electrosynthesis of Hydrogen Peroxide in Neutral Media. J. Am. Chem. Soc. 2022, 144 (34), 15845–15854. 10.1021/jacs.2c06810. PubMed DOI
Deng Q.; Hou X.; Zhong Y.; Zhu J.; Wang J.; Cai J.; Zeng Z.; Zou J.-J.; Deng S.; Yoskamtorn T.; Tsang S. C. E. 2D MOF with Compact Catalytic Sites for the One-Pot Synthesis of 2,5-Dimethylfuran from Saccharides via Tandem Catalysis. Angew. Chem., Int. Ed. 2022, 61 (34), e20220545310.1002/anie.202205453. PubMed DOI PMC
Park J.; Lee M.; Feng D.; Huang Z.; Hinckley A. C.; Yakovenko A.; Zou X.; Cui Y.; Bao Z. Stabilization of Hexaaminobenzene in a 2D Conductive Metal–Organic Framework for High Power Sodium Storage. J. Am. Chem. Soc. 2018, 140 (32), 10315–10323. 10.1021/jacs.8b06020. PubMed DOI
Thorarinsdottir A. E.; Harris T. D. Metal–Organic Framework Magnets. Chem. Rev. 2020, 120 (16), 8716–8789. 10.1021/acs.chemrev.9b00666. PubMed DOI
Écija D.; Urgel J. I.; Seitsonen A. P.; Auwärter W.; Barth J. v. Lanthanide-Directed Assembly of Interfacial Coordination Architectures-From Complex Networks to Functional Nanosystems. Acc. Chem. Res. 2018, 51 (2), 365–375. 10.1021/acs.accounts.7b00379. PubMed DOI
Dong L.; Gao Z. A. Z.; Lin N. Self-Assembly of Metal–Organic Coordination Structures on Surfaces. Prog. Surf. Sci. 2016, 91 (3), 101–135. 10.1016/j.progsurf.2016.08.001. DOI
Cui Q.; Qin G.; Wang W.; K R G.; Du A.; Sun Q. Mo-Based 2D MOF as a Highly Efficient Electrocatalyst for Reduction of N2 to NH3: A Density Functional Theory Study. J. Mater. Chem. A 2019, 7 (24), 14510–14518. 10.1039/C9TA02926E. DOI
Liu J. H.; Yang L. M.; Ganz E. Electrochemical Reduction of CO2 by Single Atom Catalyst TM-TCNQ Monolayers. J. Mater. Chem. A 2019, 7 (8), 3805–3814. 10.1039/C8TA08677J. DOI
Deng Q.; Zhao J.; Wu T.; Chen G.; Hansen H. A.; Vegge T. 2D Transition Metal–TCNQ Sheets as Bifunctional Single-Atom Catalysts for Oxygen Reduction and Evolution Reaction (ORR/OER). J. Catal. 2019, 370, 378–384. 10.1016/j.jcat.2018.12.012. DOI
Zhang L.-C.; Zhang L.; Qin G.; Zheng Q.-R.; Hu M.; Yan Q.-B.; Su G. Two-Dimensional Magnetic Metal–Organic Frameworks with the Shastry-Sutherland Lattice. Chem. Sci. 2019, 10 (44), 10381–10387. 10.1039/C9SC03816G. PubMed DOI PMC
Miner E. M.; Fukushima T.; Sheberla D.; Sun L.; Surendranath Y.; Dincă M. Electrochemical Oxygen Reduction Catalysed by Ni3(Hexaiminotriphenylene)2. Nat. Commun. 2016, 7 (1), 10942.10.1038/ncomms10942. PubMed DOI PMC
Mohammadtaheri M.; Ramanathan R.; Bansal V. Emerging Applications of Metal-TCNQ Based Organic Semiconductor Charge Transfer Complexes for Catalysis. Catal. Today. 2016, 278, 319–329. 10.1016/j.cattod.2015.11.017. DOI
Dhakshinamoorthy A.; Asiri A. M.; Garcia H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31 (41), 190061710.1002/adma.201900617. PubMed DOI
Wang Q.; Franco-Cañellas A.; Yang J.; Hausch J.; Struzek S.; Chen M.; Thakur P. K.; Gerlach A.; Duhm S.; Schreiber F. Heteromolecular Bilayers on a Weakly Interacting Substrate: Physisorptive Bonding and Molecular Distortions of Copper–Hexadecafluorophthalocyanine. ACS Appl. Mater. Int. 2020, 12 (12), 14542–14551. 10.1021/acsami.9b22812. PubMed DOI
Faraggi M. N.; Jiang N.; Gonzalez-Lakunza N.; Langner A.; Stepanow S.; Kern K.; Arnau A. Bonding and Charge Transfer in Metal–Organic Coordination Networks on Au(111) with Strong Acceptor Molecules. J. Phys. Chem. C 2012, 116 (46), 24558–24565. 10.1021/jp306780n. DOI
Santhini V. M.; Wäckerlin C.; Cahlík A.; Ondráček M.; Pascal S.; Matěj A.; Stetsovych O.; Mutombo P.; Lazar P.; Siri O.; Jelínek P. 1D Coordination π–d Conjugated Polymers with Distinct Structures Defined by the Choice of the Transition Metal: Towards a New Class of Antiaromatic Macrocycles. Angew. Chem., Int. Ed. 2021, 60 (1), 439–445. 10.1002/anie.202011462. PubMed DOI
Rossel F.; Brodard P.; Patthey F.; Richardson N. v; Schneider W.-D. Modified Herringbone Reconstruction on Au(111) Induced by Self-Assembled Azure A Islands. Surf. Sci. 2008, 602 (14), L115–L117. 10.1016/j.susc.2008.06.009. DOI
Otero R.; Miranda R.; Gallego J. M. A Comparative Computational Study of the Adsorption of TCNQ and F4-TCNQ on the Coinage Metal Surfaces. ACS Omega 2019, 4 (16), 16906–16915. 10.1021/acsomega.9b02154. PubMed DOI PMC
Schmid M.; Zirzlmeier J.; Steinrück H.-P.; Gottfried J. M. Interfacial Interactions of Iron(II) Tetrapyrrole Complexes on Au(111). J. Phys. Chem. C 2011, 115 (34), 17028–17035. 10.1021/jp204524s. DOI
Baber A. E.; Jensen S. C.; Iski E.; Sykes E. C. H. Extraordinary Atomic Mobility of Au(111) at 80 K: Effect of Styrene Adsorption. J. Am. Chem. Soc. 2006, 128 (48), 15384–15385. 10.1021/ja065904k. PubMed DOI
Voznyy O.; Dubowski J. J.; Yates J. T.; Maksymovych P. The Role of Gold Adatoms and Stereochemistry in Self-Assembly of Methylthiolate on Au(111). J. Am. Chem. Soc. 2009, 131 (36), 12989–12993. 10.1021/ja902629y. PubMed DOI
Mousley P. J.; Rochford L. A.; Ryan P. T. P. P.; Blowey P.; Lawrence J.; Duncan D. A.; Hussain H.; Sohail B.; Lee T.-L. L.; Bell G. R.; Costantini G.; Maurer R. J.; Nicklin C.; Woodruff D. P. Direct Experimental Evidence for Substrate Adatom Incorporation into a Molecular Overlayer. J. Phys. Chem. C 2022, 126 (16), 7346–7355. 10.1021/acs.jpcc.2c01432. PubMed DOI PMC
Jakub Z.; Kurowská A.; Herich O.; Černá L.; Kormoš L.; Shahsavar A.; Procházka P.; Čechal J. Remarkably Stable Metal–Organic Frameworks on an Inert Substrate: M-TCNQ on Graphene (M = Ni, Fe, Mn). Nanoscale 2022, 14 (26), 9507–9515. 10.1039/D2NR02017C. PubMed DOI
Carlotto S.; Fuhr J. D.; Cossaro A.; Verdini A.; Casarin M.; Lingenfelder M.; Gayone J. E.; Floreano L.; Ascolani H. Stabilization of High-Spin Mn Ions in Tetra-Pyrrolic Configuration on Copper. Appl. Surf. Sci. 2021, 551, 14930710.1016/j.apsusc.2021.149307. DOI
Machaín P.; Fuhr J. D.; Schneider S.; Carlotto S.; Casarin M.; Cossaro A.; Verdini A.; Floreano L.; Lingenfelder M.; Gayone J. E.; Ascolani H. Mn–Cu Transmetalation as a Strategy for the Assembly of Decoupled Metal–Organic Networks on Sn/Cu(001) Surface Alloys. J. Phys. Chem. C 2020, 124 (35), 18993–19002. 10.1021/acs.jpcc.0c03395. DOI
Hötger D.; Carro P.; Gutzler R.; Wurster B.; Chandrasekar R.; Klyatskaya S.; Ruben M.; Salvarezza R. C.; Kern K.; Grumelli D. Polymorphism and Metal-Induced Structural Transformation in 5,5′-Bis(4-Pyridyl)(2,2′-Bispyrimidine) Adlayers on Au(111). Phys. Chem. Chem. Phys. 2018, 20 (23), 15960–15969. 10.1039/C7CP07746G. PubMed DOI
Berger R. K.; Jeindl A.; Hörmann L.; Hofmann O. T. Role of Adatoms for the Adsorption of F4TCNQ on Au(111). J. Phys. Chem. C 2022, 126 (17), 7718–7727. 10.1021/acs.jpcc.2c00994. PubMed DOI PMC
Wang Y.; Liang Y.; Bo T.; Meng S.; Liu M. Orbital Dependence in Single-Atom Electrocatalytic Reactions. J. Phys. Chem. Lett. 2022, 13 (25), 5969–5976. 10.1021/acs.jpclett.2c01381. PubMed DOI
Qiao W.; Yan S.; Jin D.; Xu X.; Mi W.; Wang D. Vertical-Orbital Band Center as an Activity Descriptor for Hydrogen Evolution Reaction on Single-Atom-Anchored 2D Catalysts. J. Phys.: Condens. Matter 2021, 33 (24), 24520110.1088/1361-648X/abe9da. PubMed DOI
Hulva J.; Meier M.; Bliem R.; Jakub Z.; Kraushofer F.; Schmid M.; Diebold U.; Franchini C.; Parkinson G. S. Unraveling CO Adsorption on Model Single-Atom Catalysts. Science 2021, 371 (6527), 375–379. 10.1126/science.abe5757. PubMed DOI
Niesner D.; Fauster T.; Dadap J. I.; Zaki N.; Knox K. R.; Yeh P. C.; Bhandari R.; Osgood R. M.; Petrović M.; Kralj M. Trapping Surface Electrons on Graphene Layers and Islands. Phys. Rev. B 2012, 85 (8), 81402.10.1103/PhysRevB.85.081402. DOI
Derry G. N.; Kern M. E.; Worth E. H. Recommended Values of Clean Metal Surface Work Functions. J. Vac. Sci. Technol. A 2015, 33 (6), 60801.10.1116/1.4934685. DOI
Otero R.; Vázquez de Parga A. L.; Gallego J. M. Electronic, Structural and Chemical Effects of Charge-Transfer at Organic/Inorganic Interfaces. Surf. Sci. Rep. 2017, 72 (3), 105–145. 10.1016/j.surfrep.2017.03.001. DOI
Blanco-Rey M.; Sarasola A.; Nistor C.; Persichetti L.; Stamm C.; Piamonteze C.; Gambardella P.; Stepanow S.; Otrokov M. M.; Golovach V. N.; Arnau A. Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms. Molecules. 2018, 23 (4), 964.10.3390/molecules23040964. PubMed DOI PMC
Kralj M.; Pletikosić I.; Petrović M.; Pervan P.; Milun M.; N’Diaye A. T.; Busse C.; Michely T.; Fujii J.; Vobornik I. Graphene on Ir(111) Characterized by Angle-Resolved Photoemission. Phys. Rev. B 2011, 84 (7), 75427.10.1103/PhysRevB.84.075427. DOI
Romaner L.; Heimel G.; Brédas J.-L.; Gerlach A.; Schreiber F.; Johnson R. L.; Zegenhagen J.; Duhm S.; Koch N.; Zojer E. Impact of Bidirectional Charge Transfer and Molecular Distortions on the Electronic Structure of a Metal-Organic Interface. Phys. Rev. Lett. 2007, 99 (25), 25680110.1103/PhysRevLett.99.256801. PubMed DOI
Hwang J.; Kim E.-G.; Liu J.; Brédas J.-L.; Duggal A.; Kahn A. Photoelectron Spectroscopic Study of the Electronic Band Structure of Polyfluorene and Fluorene-Arylamine Copolymers at Interfaces. J. Phys. Chem. C 2007, 111 (3), 1378–1384. 10.1021/jp067004w. DOI
Knecht P.; Reichert J.; Deimel P. S.; Feulner P.; Haag F.; Allegretti F.; Garnica M.; Schwarz M.; Auwärter W.; Ryan P. T. P.; Lee T.-L.; Duncan D. A.; Seitsonen A. P.; Barth J. V.; Papageorgiou A. C. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew. Chem., Int. Ed. 2021, 60 (30), 16561–16567. 10.1002/anie.202104075. PubMed DOI PMC
Knecht P.; Ryan P. T. P.; Duncan D. A.; Jiang L.; Reichert J.; Deimel P. S.; Haag F.; Küchle J. T.; Allegretti F.; Lee T.-L.; Schwarz M.; Garnica M.; Auwärter W.; Seitsonen A. P.; Barth J. V.; Papageorgiou A. C. Tunable Interface of Ruthenium Porphyrins and Silver. J. Phys. Chem. C 2021, 125 (5), 3215–3224. 10.1021/acs.jpcc.0c10418. DOI
Gerbert D.; Tegeder P. Molecular Ion Formation by Photoinduced Electron Transfer at the Tetracyanoquinodimethane/Au(111) Interface. J. Phys. Chem. Lett. 2017, 8 (19), 4685–4690. 10.1021/acs.jpclett.7b01897. PubMed DOI
Deng Q.; Wu T.; Chen G.; Hansen H. A.; Vegge T. Combinatorial Selection of a Two-Dimensional 3d-TM-Tetracyanoquinodimethane (TM-TCNQ) Monolayer as a High-Activity Nanocatalyst for CO Oxidation. Phys. Chem. Chem. Phys. 2018, 20 (7), 5173–5179. 10.1039/C7CP07988E. PubMed DOI
Lv S.-Y.; Huang C.-X.; Li G.; Yang L.-M. Electrocatalytic Mechanism of N2 Reduction Reaction by Single-Atom Catalyst Rectangular TM-TCNQ Monolayers. ACS Appl. Mater. Int. 2021, 13 (25), 29641–29653. 10.1021/acsami.1c06368. PubMed DOI
Xie M.; Xiong X.; Yang L.; Shi X.; Asiri A. M.; Sun X. An Fe(TCNQ)2 Nanowire Array on Fe Foil: An Efficient Non-Noble-Metal Catalyst for the Oxygen Evolution Reaction in Alkaline Media. Chem. Commun. 2018, 54 (18), 2300–2303. 10.1039/C7CC09105B. PubMed DOI
Peng S.; Rao Y.; Huang Y.; Li T.; Li R.; Cao J.; Lee S. N-Coordinated Ir Single Atoms Anchored on Carbon Octahedrons for Catalytic Oxidation of Formaldehyde under Ambient Conditions. Catal. Sci. Technol. 2022, 12 (12), 4001–4011. 10.1039/D2CY00743F. DOI
Zhang J.; Liu P.; Wang G.; Zhang P. P.; Zhuang X. D.; Chen M. W.; Weidinger I. M.; Feng X. L. Ruthenium/Nitrogen-Doped Carbon as an Electrocatalyst for Efficient Hydrogen Evolution in Alkaline Solution. J. Mater. Chem. A 2017, 5 (48), 25314–25318. 10.1039/C7TA08764K. DOI
Kaiser S. K.; Chen Z.; Faust Akl D.; Mitchell S.; Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120 (21), 11703–11809. 10.1021/acs.chemrev.0c00576. PubMed DOI
N’Diaye A. T.; Coraux J.; Plasa T. N.; Busse C.; Michely T. Structure of Epitaxial Graphene on Ir(111). New J. Phys. 2008, 10 (4), 43033.10.1088/1367-2630/10/4/043033. DOI
Coraux J.; T N’Diaye A.; Engler M.; Busse C.; Wall D.; Buckanie N.; Meyer zu Heringdorf F.-J.; van Gastel R.; Poelsema B.; Michely T. Growth of Graphene on Ir(111). New J. Phys. 2009, 11 (2), 23006.10.1088/1367-2630/11/2/023006. DOI
Choi J. I. J.; Mayr-Schmölzer W.; Mittendorfer F.; Redinger J.; Diebold U.; Schmid M. The Growth of Ultra-Thin Zirconia Films on Pd3Zr(0001). J. Phys.: Condens. Matter 2014, 26 (22), 22500310.1088/0953-8984/26/22/225003. PubMed DOI
Hermann K. E; van Hove M. A.. LEEDPat, Version 4.2. FHI Berlin: HBKU Hong Kong, 2014.
Kresse G.; Furthmüller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI
Blöchl P. E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Klimeš J.; Bowler D. R.; Michaelides A. Chemical Accuracy for the van Der Waals Density Functional. J. Phys.: Condens. Matter 2009, 22 (2), 22201.10.1088/0953-8984/22/2/022201. PubMed DOI
Dudarev S. L.; Botton G. A.; Savrasov S. Y.; Humphreys C. J.; Sutton A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B 1998, 57 (3), 1505–1509. 10.1103/PhysRevB.57.1505. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 15410410.1063/1.3382344. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI
Identical Fe-N4 Sites with Different Reactivity: Elucidating the Effect of Support Curvature