Global meta-analysis shows action is needed to halt genetic diversity loss
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza
PubMed
39880948
PubMed Central
PMC11839457
DOI
10.1038/s41586-024-08458-x
PII: 10.1038/s41586-024-08458-x
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- genetická variace * genetika MeSH
- lidské činnosti MeSH
- rostliny genetika MeSH
- zachování přírodních zdrojů * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Mitigating loss of genetic diversity is a major global biodiversity challenge1-4. To meet recent international commitments to maintain genetic diversity within species5,6, we need to understand relationships between threats, conservation management and genetic diversity change. Here we conduct a global analysis of genetic diversity change via meta-analysis of all available temporal measures of genetic diversity from more than three decades of research. We show that within-population genetic diversity is being lost over timescales likely to have been impacted by human activities, and that some conservation actions may mitigate this loss. Our dataset includes 628 species (animals, plants, fungi and chromists) across all terrestrial and most marine realms on Earth. Threats impacted two-thirds of the populations that we analysed, and less than half of the populations analysed received conservation management. Genetic diversity loss occurs globally and is a realistic prediction for many species, especially birds and mammals, in the face of threats such as land use change, disease, abiotic natural phenomena and harvesting or harassment. Conservation strategies designed to improve environmental conditions, increase population growth rates and introduce new individuals (for example, restoring connectivity or performing translocations) may maintain or even increase genetic diversity. Our findings underscore the urgent need for active, genetically informed conservation interventions to halt genetic diversity loss.
Applied BioSciences Macquarie University Sydney New South Wales Australia
Centre for Genetic Resources The Netherlands Wageningen University Wageningen The Netherlands
Copenhagen Zoo Frederiksberg Denmark
Department of Animal Science University of Zagreb Faculty of Agriculture Zagreb Croatia
Department of Biology and Ecology Faculty of Sciences University of Novi Sad Novi Sad Serbia
Department of Biology Faculty of Sciences University of Porto Porto Portugal
Department of Biology University of Copenhagen Copenhagen Denmark
Department of Chemistry and Bioscience Aalborg University Aalborg Denmark
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Evolutionary Biology University of Vienna Vienna Austria
Department of Genetics University of the Free State Bloemfontein South Africa
Department of Life Sciences University of Trieste Trieste Italy
Department of Phytology Faculty of Forestry Technical University in Zvolen Zvolen Slovakia
Department of Veterinary Medicine University of Sassari Sassari Italy
Department of Zoology Division of Population Genetics Stockholm University Stockholm Sweden
EBM Biological Station of Mértola Mértola Portugal
Ecology Evolution and Biodiversity Conservation KU Leuven Leuven Belgium
Estación Biológica de Doñana Seville Spain
European Cooperation in Science and Technology '
Faculty of Environmental Protection Velenje Slovenia
Forest Ecology and Forest Management Wageningen University Wageningen The Netherlands
Genetic Resource Centre Latvian State Forest Research Institute Silava Salaspils Latvia
Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
International Union for the Conservation of Nature
National Biodiversity Future Center Palermo Italy
Natural History Museum Vienna Vienna Austria
Norwegian Institute for Nature Research Trondheim Norway
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
Research Institute for Nature and Forest Geraardsbergen Belgium
Research Institute on Terrestrial Ecosystems Porano Italy
Royal Botanic Garden Edinburgh Edinburgh UK
Royal Botanic Gardens Victoria Melbourne Victoria Australia
School of Biosciences Museum Avenue Cardiff University Cardiff UK
School of Science Edith Cowan University Joondalup Western Australia Australia
Slovenian Forestry Institute Ljubljana Slovenia
The Center for Tree Science The Morton Arboretum Lisle IL USA
Wildlife Analysis Unit Swedish Environmental Protection Agency Stockholm Sweden
Wildlife Ecology and Conservation Group Wageningen University Wageningen The Netherlands
Wildlife Ecology and Management University Freiburg Freiburg Germany
Zobrazit více v PubMed
Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change1, 313–318 (2011).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature486, 59–67 (2012). PubMed
Jaureguiberry, P. et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv.8, eabm9982 (2022). PubMed PMC
Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl Acad. Sci. USA118, e2104642118 (2021). PubMed PMC
Convention on Biological Diversity. Decision adopted by the Conference of the Parties to the Convention on Biological Diversity: 15/5 Monitoring framework for the Kunming–Montreal Global Biodiversity Framework (United Nations Environment Programme, 2022); https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf.
Convention on Biological Diversity. Decision adopted by the Conference of the Parties to the Convention on Biological Diversity: 15/4 Kunming–Montreal Global Biodiversity Framework (United Nations Environment Programme, 2022); https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf.
Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev.97, 640–663 (2022). PubMed PMC
Reusch, T. B., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA102, 2826–2831 (2005). PubMed PMC
Hughes, A. R. et al. Ecological consequences of genetic diversity. Ecol. Lett.11, 609–623 (2008). PubMed
Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol.22, 925–946 (2013). PubMed
Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol.5, 574–582 (2021). PubMed
Hoban, S. et al. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv. Genet.24, 181–191 (2023). PubMed PMC
Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. App.12, 1505–1512 (2019). PubMed PMC
DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet.9, 141–156 (2008).
Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol.23, 29–39 (2014). PubMed
Miraldo, A. et al. An Anthropocene map of genetic diversity. Science353, 1532–1535 (2016). PubMed
Leroy, G. et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol. App.11, 1066–1083 (2018). PubMed PMC
Schmidt, C. et al. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. Royal Soc. B287, 20192497 (2020). PubMed PMC
González, A. V., Gómez-Silva, V., Ramírez, M. J. & Fontúrbel, F. E. Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv. Biol.34, 711–720 (2020). PubMed
Exposito-Alonso, M. et al. Genetic diversity loss in the Anthropocene. Science377, 1431–1435 (2022). PubMed
Hoban, S. et al. Global commitments to conserving and monitoring genetic diversity are now necessary and feasible. BioScience71, 964–976 (2021). PubMed PMC
Crandall, E. D. et al. Importance of timely metadata curation to the global surveillance of genetic diversity. Conserv. Biol.37, e14061 (2023). PubMed PMC
Rey Benayas, J. M., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science325, 1121–1124 (2009). PubMed
Langhammer, P. F. et al. The positive impact of conservation action. Science384, 453–458 (2024). PubMed
Leigh, D. M. et al. Opportunities and challenges of macrogenetic studies. Nat. Rev. Genet.22, 791–807 (2021). PubMed
Paz-Vinas, I. et al. Macrogenetic studies must not ignore limitations of genetic markers and scale. Ecol. Lett.24, 1282–1284 (2021). PubMed
Waldvogel, A.-M., Schreiber, D., Pfenninger, M. & Feldmeyer, B. Climate change genomics calls for standardized data reporting. Front. Ecol. Evol.10.3389/fevo.2020.00242 (2020).
Hoban, S. et al. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol. Rev.97, 1511–1538 (2022). PubMed PMC
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature555, 175–182 (2018). PubMed
IUCN. The IUCN Red List of Threatened Specieshttp://www.iucnredlist.org (accessed 3 June 2024).
Wright, S. Evolution in Mendelian populations. Genetics16, 97–159 (1931). PubMed PMC
Pinto, A. V. et al. The impact of habitat loss and population fragmentation on genomic erosion. Conserv. Genet.25, 49–57 (2024).
Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA113, 6388–6396 (2016). PubMed PMC
Frankham, R. et al. Genetic Management of Fragmented Animal and Plant Populations (Oxford Univ. Press, 2017).
Mastretta-Yanes, A. et al. Multinational evaluation of genetic diversity indicators for the Kunming–Montreal Global Biodiversity Framework. Ecol. Lett.27, e14461 (2024). PubMed
ESRI, World Countries - Generalized [Esri Data & Maps]. Scale 1:5,000,000. https://hub.arcgis.com/datasets/esri::world-countries-generalized/about (2022).
Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Br. Med. J.372, n71 (2021). PubMed PMC
O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev.96, 1695–1722 (2021). PubMed PMC
R Core Team. R: A Language and Environment for Statistical Computing.http://www.R-project.org/ (R Foundation for Statistical Computing, 2023).
LeBeau, B. pdfsearch: search tools for PDF files. J. Open Source Softw.3, 668 (2018).
Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. Version 0.8.0 https://CRAN.R-project.org/package=dplyr (2019).
Gagolewski, M. stringi: fast and portable character string processing in R. J. Stat. Softw.103, 1–59 (2022).
Westgate, M. J. revtools: an R package to support article screening for evidence synthesis. Res. Synth. Methods10, 606–614 (2019). PubMed
Kingman, J. F. C. The coalescent. Stoch. Process. Appl.13, 235–248 (1982).
Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics153, 2013–2029 (1999). PubMed PMC
Rees, J. A. & Cranston, K. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodivers Data J.5, e12581 (2017). PubMed PMC
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience67, 534–545 (2017). PubMed PMC
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience57, 573–583 (2007).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Wilkins, D. treemapify: Draw treemaps in ‘ggplot2’. Version 2.5.5 https://CRAN.R-project.org/package=treemapify (2021).
Wilke, C. ggridges: Ridgeline plots in ‘ggplot2’. Version 0.5.4 https://CRAN.R-project.org/package=ggridges (2022).
Wei, T. & Simko, V. R package corrplot: visualization of a correlation matrix. Version 0.92. GitHubhttps://github.com/taiyun/corrplot (2021).
Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. Version 1.0.7 https://CRAN.R-project.org/package=factoextra (2020).
Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol.7, 1476–1481 (2016).
Yu, G. et al. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol.8, 28–36 (2017).
Xu, S. et al. ggtreeExtra: compact visualization of richly annotated phylogenetic data. Mol. Biol. Evol.38, 4039–4042 (2021). PubMed PMC
Yu, G. ggimage: Use image in ‘ggplot2’. Version 0.3.3 https://CRAN.R-project.org/package=ggimage (2023).
Gearty, W. & Jones, L. A. rphylopic: an R package for fetching, transforming, and visualising PhyloPic silhouettes. Methods Ecol. Evol.14, 2700–2708 (2023).
Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in ecology and evolution (Princeton Univ. Press, 2013).
Marfo, P. & Okyere, G. A. The accuracy of effect-size estimates under normals and contaminated normals in meta-analysis. Heliyon5, e01838 (2019). PubMed PMC
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw.33, 1–22 (2010). PubMed
Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News6, 7–11 (2006).
Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol.26, 1253–1274 (2012).
Nakagawa, S. et al. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. Environ. Evid.12, 8 (2023). PubMed PMC
Deeks, J. J., Higgins, J. P. T. & Altman, D. G. in Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (Updated August 2023) (eds Higgins, J. P. T. et al.) Ch. 10 (Wiley-Blackwell, 2023).
Shaw, R. E. Supporting data and code for: Global meta-analysis of genetic diversity (v1.0). Zenodo10.5281/zenodo.13903787 (2024).