An abundant ginger compound furanodienone alleviates gut inflammation via the xenobiotic nuclear receptor PXR in mice
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
RGPIN480432
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
PJT-186117
Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
82204227
National Natural Science Foundation of China (National Science Foundation of China)
R01 CA222469
NCI NIH HHS - United States
CRDPJ597036
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)
PubMed
39900639
PubMed Central
PMC11791082
DOI
10.1038/s41467-025-56624-0
PII: 10.1038/s41467-025-56624-0
Knihovny.cz E-resources
- MeSH
- Anti-Inflammatory Agents * pharmacology MeSH
- Furans * pharmacology chemistry MeSH
- Colitis * drug therapy MeSH
- Colon drug effects pathology MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Pregnane X Receptor * metabolism genetics MeSH
- Inflammation drug therapy MeSH
- Zingiber officinale * chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Inflammatory Agents * MeSH
- Furans * MeSH
- Pregnane X Receptor * MeSH
The literature documenting the value of drug-like molecules found in natural products is vast. Although many dietary and herbal remedies have been found to be effective for treating intestinal inflammation, the identification of their active components has lagged behind. In this study, we find that a major ginger component, furanodienone (FDN), is a selective pregnane X receptor (PXR) ligand with agonistic transcriptional outcomes. We show that FDN binds within a sub-pocket of the PXR ligand binding domain (LBD), with subsequent alterations in LBD structure. Using male mice, we show that orally provided FDN has potent PXR-dependant anti-inflammatory outcomes that are colon-specific. Increased affinity and target gene activation in the presence of synergistically acting agonists indicates further opportunities for augmenting FDN activity, efficacy and safety. Collectively, these results support the translational potential of FDN as a therapeutic agent for the treatment and prevention of colonic diseases.
Centre de Biologie Structurale INSERM CNRS Université de Montpellier Montpellier France
College of Marine Life Sciences Ocean University of China Qingdao Shandong China
Department of Biological and Environmental Engineering Cornell University Ithaca NY USA
Department of Cell Biology and Genetics Faculty of Science Palacký University Olomouc Czech Republic
Department of Chemistry University of Toronto Toronto ON Canada
Department of Chemistry York University Toronto ON Canada
Department of Earth and Environmental Sciences University of Milano Bicocca Milan Italy
Department of Molecular Genetics University of Toronto Toronto ON Canada
Department of Pharmaceutical Sciences University of Maryland School of Pharmacy Baltimore MD USA
Donnelly Centre for Cellular and Biomolecular Research University of Toronto Toronto ON Canada
Institut de Recherche en Cancérologie de Montpellier Montpellier France
School of Pharmacy Lanzhou University Lanzhou Gansu People's Republic of China
School of the Environment University of Toronto Toronto ON Canada
See more in PubMed
Wang, R., Li, Z., Liu, S. & Zhang, D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open13, e065186 (2023). PubMed PMC
Kaplan, G. G. & Windsor, J. W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol.18, 56–66 (2021). PubMed PMC
Kuenzig, M. E. et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review. Gastroenterology162, 1147–1159.e1144 (2022). PubMed
Collaborators, G. B. D. I. B. D. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol.5, 17–30 (2020). PubMed PMC
Burisch, J. et al. The cost of inflammatory bowel disease in high-income settings: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol. Hepatol.8, 458–492 (2023). PubMed
Ott, C. & Scholmerich, J. Extraintestinal manifestations and complications in IBD. Nat. Rev. Gastroenterol. Hepatol.10, 585–595 (2013). PubMed
Powrie, F. T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity3, 171–174 (1995). PubMed
Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427–434 (2007). PubMed
Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature474, 307–317 (2011). PubMed PMC
Kobayashi, T. & Hibi, T. Improving IBD outcomes in the era of many treatment options. Nat. Rev. Gastroenterol. Hepatol.20, 79–80 (2023). PubMed PMC
Villablanca, E. J., Selin, K. & Hedin, C. R. H. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat. Rev. Gastroenterol. Hepatol.19, 493–507 (2022). PubMed
Kotla, N. G. & Rochev, Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol. Med.29, 241–253 (2023). PubMed
Sigall-Boneh, R. et al. Research gaps in diet and nutrition in inflammatory bowel disease. a topical review by D-ECCO Working Group [Dietitians of ECCO]. J. Crohns Colitis11, 1407–1419 (2017). PubMed
Chen, J. C. et al. Ginger and its bioactive component inhibit enterotoxigenic Escherichia coli heat-labile enterotoxin-induced diarrhea in mice. J. Agric. Food Chem.55, 8390–8397 (2007). PubMed
Zhang, C. et al. Ginger relieves intestinal hypersensitivity of diarrhea predominant irritable bowel syndrome by inhibiting proinflammatory reaction. BMC Complement. Med. Ther.20, 279 (2020). PubMed PMC
Nikkhah-Bodaghi, M., Maleki, I., Agah, S. & Hekmatdoost, A. Zingiber officinale and oxidative stress in patients with ulcerative colitis: a randomized, placebo-controlled, clinical trial. Complement. Ther. Med.43, 1–6 (2019). PubMed
Guo, S. et al. Ginger alleviates DSS-induced ulcerative colitis severity by improving the diversity and function of gut microbiota. Front. Pharmacol.12, 632569 (2021). PubMed PMC
Zhang, M. et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials101, 321–340 (2016). PubMed PMC
Nachvak, S. M. et al. Ginger as an anticolorectal cancer spice: a systematic review of in vitro to clinical evidence. Food Sci. Nutr.11, 651–660 (2023). PubMed PMC
Scholtes, C. & Giguere, V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol.23, 750–770 (2022). PubMed
Klepsch, V., Moschen, A. R., Tilg, H., Baier, G. & Hermann-Kleiter, N. Nuclear receptors regulate intestinal inflammation in the context of IBD. Front. Immunol.10, 1070 (2019). PubMed PMC
Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity41, 296–310 (2014). PubMed PMC
Bouguen, G. et al. Intestinal steroidogenesis controls PPARgamma expression in the colon and is impaired during ulcerative colitis. Gut64, 901–910 (2015). PubMed
Bayrer, J. R. et al. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat. Commun.9, 4055 (2018). PubMed PMC
Klepsch, V. et al. Nuclear orphan receptor NR2F6 as a safeguard against experimental murine colitis. Gut67, 1434–1444 (2018). PubMed PMC
Fu, T. et al. FXR mediates ILC-intrinsic responses to intestinal inflammation. Proc. Natl Acad. Sci. USA119, e2213041119 (2022). PubMed PMC
Cheng, J., Shah, Y. M. & Gonzalez, F. J. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci.33, 323–330 (2012). PubMed PMC
Liu, J. et al. The omega-3 hydroxy fatty acid 7(S)-HDHA is a high-affinity PPARalpha ligand that regulates brain neuronal morphology. Sci. Signal15, eabo1857 (2022). PubMed
Liu, J. et al. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Nat. Commun.15, 2563 (2024). PubMed PMC
Hikino, H. et al. Sesquiterpenoids. Part XLVII. Structure, configuration, conformation, and thermal rearrangement of furanodienone, isofuranodienone, curzerenone, epicurzerenone, and pyrocurzerenone, sesquiterpenoids of Curcuma zedoaria. J. Chem. Soc. Perkin Trans.1, 478–484 (1975).
Delfosse, V. et al. Mechanistic insights into the synergistic activation of the RXR-PXR heterodimer by endocrine disruptor mixtures. Proc. Natl Acad. Sci. USA118, e2020551118 (2021). PubMed PMC
Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature550, 204–213 (2017). PubMed PMC
Xu, R. X. et al. A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol. Cell16, 919–928 (2004). PubMed
Medvedev, A. et al. Comprehensive assessment of NR ligand polypharmacology by a multiplex reporter NR assay. Sci. Rep.12, 3115 (2022). PubMed PMC
Li, Y. W. et al. Furanodienone inhibits cell proliferation and survival by suppressing ERalpha signaling in human breast cancer MCF-7 cells. J. Cell Biochem.112, 217–224 (2011). PubMed
Leavitt, S. & Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol.11, 560–566 (2001). PubMed
Creusot, N. et al. The anti-cancer drug dabrafenib is a potent activator of the human pregnane X receptor. Cells9, 1641 (2020). PubMed PMC
Xie, W. et al. An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc. Natl Acad. Sci. USA98, 3375–3380 (2001). PubMed PMC
Anzenbacher, P. & Anzenbacherova, E. Cytochromes P450 and metabolism of xenobiotics. Cell Mol. Life Sci.58, 737–747 (2001). PubMed PMC
Cao, W. et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids. Immunity47, 1182–1196.e1110 (2017). PubMed PMC
Choi, S., Neequaye, P., French, S. W., Gonzalez, F. J. & Gyamfi, M. A. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J. Biol. Chem.293, 1–17 (2018). PubMed PMC
Langmann, T. et al. Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology127, 26–40 (2004). PubMed
Zhou, C. et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Invest.116, 2280–2289 (2006). PubMed PMC
Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol.14, 329–342 (2014). PubMed
Chen, S. et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-kappaB signaling. Cell Death Dis.12, 563 (2021). PubMed PMC
Al-Sadi, R. et al. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol.300, G1054–G1064 (2011). PubMed PMC
Kuo, W. T. et al. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology161, 1924–1939 (2021). PubMed PMC
Jiang, Y. et al. Pregnane X receptor regulates liver size and liver cell fate by yes-associated protein activation in mice. Hepatology69, 343–358 (2019). PubMed PMC
Teng, S. & Piquette-Miller, M. Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br. J. Pharmacol.151, 367–376 (2007). PubMed PMC
Heidari, Z. et al. Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARgamma. Nat. Commun.10, 5825 (2019). PubMed PMC
Lin, W. et al. Structure-guided approach to modulate small molecule binding to a promiscuous ligand-activated protein. Proc. Natl Acad. Sci. USA120, e2217804120 (2023). PubMed PMC
Zhao, B. et al. 6-Shogaol derived from ginger inhibits intestinal crypt stem cell differentiation and contributes to irritable bowel syndrome risk. Research7, 0524 (2024). PubMed PMC
Hikino, H. et al. Structure and conformation of the sesquiterpenoids furanodienone and isofuranodienone. J. Chem. Soc. D Chem. Commun.10.1039/C29690000662 (1969).
Messina, F., Gigliarelli, G., Palmier, A. & Marcotullio, M. C. Furanodienone: an emerging bioactive furanosesquiterpenoid. Curr. Org. Chem.21, 305–310 (2017).
Ma, X. et al. Rifaximin is a gut-specific human pregnane X receptor activator. J. Pharmacol. Exp. Ther.322, 391–398 (2007). PubMed
Staudinger, J. L., Ding, X. & Lichti, K. Pregnane X receptor and natural products: beyond drug-drug interactions. Expert Opin. Drug Metab. Toxicol.2, 847–857 (2006). PubMed PMC
Synold, T. W., Dussault, I. & Forman, B. M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med.7, 584–590 (2001). PubMed
Moore, L. B. et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA97, 7500–7502 (2000). PubMed PMC
Cai, X., Young, G. M. & Xie, W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim. Biophys. Acta Mol. Basis Dis.1867, 166101 (2021). PubMed PMC
Zhang, J. et al. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat. Commun.15, 5919 (2024). PubMed PMC
Delfosse, V. et al. Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat. Commun.6, 8089 (2015). PubMed PMC
Garcia-Maldonado, E. et al. Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR. Nat. Commun.15, 4054 (2024). PubMed PMC
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T., International Natural Product Sciences Taskforce Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov.20, 200–216 (2021). PubMed PMC
Kurimchak, A. M. et al. The drug efflux pump MDR1 promotes intrinsic and acquired resistance to PROTACs in cancer cells. Sci. Signal15, eabn2707 (2022). PubMed PMC
Chen, M. L. et al. CAR directs T cell adaptation to bile acids in the small intestine. Nature593, 147–151 (2021). PubMed PMC
Thummel, K. E. Gut instincts: CYP3A4 and intestinal drug metabolism. J. Clin. Invest.117, 3173–3176 (2007). PubMed PMC
Chen, S. et al. Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11). Proc. Natl Acad. Sci. USA110, 19143–19148 (2013). PubMed PMC
Chen, M. et al. Analysis of genetic and chemical variability of five Curcuma species based on DNA barcoding and HPLC fingerprints. Front. Plant Sci.14, 1229041 (2023). PubMed PMC
Igoli, N. P., Obanu, Z. A., Gray, A. I. & Clements, C. Bioactive diterpenes and sesquiterpenes from the rhizomes of wild ginger (Siphonochilus aethiopicus (Schweinf) B.L Burtt). Afr. J. Tradit. Complement Altern. Med.9, 88–93 (2012). PubMed PMC
Dekebo, A., Dagne, E. & Sterner, O. Furanosesquiterpenes from Commiphora sphaerocarpa and related adulterants of true myrrh. Fitoterapia73, 48–55 (2002). PubMed
Joshi, S. C. & Mathela, C. S. Antioxidant and antibacterial activities of the leaf essential oil and its constituents furanodienone and curzerenone from Lindera pulcherrima (Nees.) Benth. ex hook. f. Pharmacognosy Res.4, 80–84 (2012). PubMed PMC
Jiang, Y., Wang, X. & Hu, D. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death Dis.8, e2815 (2017). PubMed PMC
Ouyang, N. et al. Pregnane X receptor suppresses proliferation and tumourigenicity of colon cancer cells. Br. J. Cancer102, 1753–1761 (2010). PubMed PMC
Cheng, J. et al. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer. J. Pharmacol. Exp. Ther.351, 559–567 (2014). PubMed PMC
Bansard, L. et al. Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Rep.17, 835–848 (2022). PubMed PMC
Dong, Y. et al. Pregnane X receptor is associated with unfavorable survival and induces chemotherapeutic resistance by transcriptional activating multidrug resistance-related protein 3 in colorectal cancer. Mol. Cancer16, 71 (2017). PubMed PMC
Niu, X. et al. Nuclear receptor PXR confers irradiation resistance by promoting DNA damage response through stabilization of ATF3. Front. Oncol.12, 837980 (2022). PubMed PMC
Bwayi, M. N. et al. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res.50, 3254–3275 (2022). PubMed PMC
Sonoda, J. et al. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proc. Natl Acad. Sci. USA102, 2198–2203 (2005). PubMed PMC
Langmade, S. J. et al. Pregnane X receptor (PXR) activation: a mechanism for neuroprotection in a mouse model of Niemann-Pick C disease. Proc. Natl Acad. Sci. USA103, 13807–13812 (2006). PubMed PMC
Yu, X. et al. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci. Transl. Med.12, eaay7591 (2020). PubMed
Fan, S. et al. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat. Commun.14, 3368 (2023). PubMed PMC
Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem.49, 6177–6196 (2006). PubMed
Riu, A. et al. Characterization of novel ligands of ERα, Erβ, and PPARγ: the case of halogenated bisphenol A and their conjugated metabolites. Toxicol. Sci.122, 372–382 (2011). PubMed
Peng, H. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Zenodo10.5281/zenodo.10684290 (2024). PubMed PMC
Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen19, 817–821 (2014). PubMed