Endothelial Dysfunction in the Tubule Area Accelerates the Progression of Early Diabetic Kidney Disease
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39903891
PubMed Central
PMC11835216
DOI
10.33549/physiolres.935347
PII: 935347
Knihovny.cz E-zdroje
- MeSH
- cévní endotel * patologie metabolismus patofyziologie MeSH
- diabetické nefropatie * patologie metabolismus genetika patofyziologie MeSH
- endoteliální buňky * patologie metabolismus MeSH
- ledvinové kanálky * patologie metabolismus patofyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- progrese nemoci MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Therefore, understanding the molecular regulatory mechanisms underlying the pathogenesis of DKD is imperative. In this study, we aimed to explore the molecular mechanisms of tubule region endothelial dysfunction in early DKD. Early-stage DKD model was established in 16-week-old female db/db mice for 16 weeks. Body weight, glucose level, and urine albumin-to-creatinine ratio (UACR) were measured. Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining were performed to evaluate pathological lesions. RNA sequencing data of the kidneys and integrated publicly available single-cell and spatial transcriptome datasets were used to investigate the mechanism of endothelial dysfunction. There was a significant increase in body weight (p = 0.001), glucose levels (p=0.0008), and UACR (p=0.006) in db/db mice compared with db/m mice. H&E and PAS staining showed that vacuolar lesions and protein casts of tubules were the major histopathological changes observed in early-stage DKD mice. The apoptotic pathway in endothelial cells was notably activated in DKD, and Thbs1 was identified as the central gene involved in this apoptotic process. Deconvolution of the cell composition in the RNA sequencing data showed a decrease in the proportion of endothelial cells in the DKD mice. Further analysis of the activity and regulatory network of transcription factors showed that Creb1 was activated in both mouse and human early-stage DKD, suggesting that Creb1 activation may be involved in early kidney injury. The endothelial cell apoptotic pathway is activated in DKD, and the proportion of endothelial cells was reduced in the DKD mice, which is significantly associated with Thbs1. Keywords: Diabetic kidney disease, Endothelial dysfunction, RNA sequencing,Thbs1, Creb1.
Zobrazit více v PubMed
Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–2045. doi: 10.2215/CJN.11491116. PubMed DOI PMC
Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol. 2020;16:206–222. doi: 10.1038/s41581-019-0234-4. PubMed DOI
Fu H, Liu S, Bastacky SI, Wang X, Tian XJ, Zhou D. Diabetic kidney diseases revisited: A new perspective for a new era. Mol Metab. 2019;30:250–263. doi: 10.1016/j.molmet.2019.10.005. PubMed DOI PMC
Lassén E, Daehn IS. Molecular mechanisms in early diabetic kidney disease: glomerular endothelial cell dysfunction. Int J Mol Sci. 2020:21. doi: 10.3390/ijms21249456. PubMed DOI PMC
Rovin BH. Beyond a glomerulocentric view of inflammation. Kidney Int. 2001;60:797–798. doi: 10.1046/j.1523-1755.2001.060002797.x. PubMed DOI
Krolewski AS. Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2015;38:954–962. doi: 10.2337/dc15-0184. PubMed DOI PMC
Gilbert RE. Proximal Tubulopathy: Prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66:791–800. doi: 10.2337/db16-0796. PubMed DOI
Chen SJ, Lv LL, Liu BC, Tang RN. Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Prolif. 2020;53:e12763. doi: 10.1111/cpr.12763. PubMed DOI PMC
Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol. 2003;284:F1138–1144. doi: 10.1152/ajprenal.00315.2002. PubMed DOI
Hudkins KL, Pichaiwong W, Wietecha T, Kowalewska J, Banas MC, Spencer MW, et al. BTBR Ob/Ob mutant mice model progressive diabetic nephropathy. J Am Soc Nephrol. 2010;21:1533–1542. doi: 10.1681/ASN.2009121290. PubMed DOI PMC
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–382. doi: 10.1038/nmeth.1315. PubMed DOI
Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021;22:627–644. doi: 10.1038/s41576-021-00370-8. PubMed DOI PMC
Luo W, Tang S, Xiao X, Luo S, Yang Z, Huang W, et al. Translation animal models of diabetic kidney disease: biochemical and histological phenotypes, advantages and limitations. Diab, Metab Synd Obesity. 2023;16:1297–1321. doi: 10.2147/dmso.S408170. PubMed DOI PMC
Harlan SM, Heinz-Taheny KM, Sullivan JM, Wei T, Baker HE, Jaqua DL, et al. Progressive Renal Disease Established by Renin-Coding Adeno-Associated Virus–Driven Hypertension in Diverse Diabetic Models. J Am Soc Nephrol. 2018;29:477–491. doi: 10.1681/asn.2017040385. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Petitprez F, Levy S, Sun CM, Meylan M, Linhard C, Becht E, et al. The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression. Genome Med. 2020;12:86. doi: 10.1186/s13073-020-00783-w. PubMed DOI PMC
Su K, Katebi A, Kohar V, Clauss B, Gordin D, Qin ZS, et al. NetAct: a computational platform to construct core transcription factor regulatory networks using gene activity. Genome Biol. 2022;23:270. doi: 10.1186/s13059-022-02835-3. PubMed DOI PMC
Huang B, Jia D, Feng J, Levine H, Onuchic JN, Lu M. RACIPE: a computational tool for modeling gene regulatory circuits using randomization. BMC Syst Biol. 2018;12:74. doi: 10.1186/s12918-018-0594-6. PubMed DOI PMC
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods. 2019;16:1289–1296. doi: 10.1038/s41592-019-0619-0. PubMed DOI PMC
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587 e3529. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC
Marshall JL, Noel T, Wang QS, Chen H, Murray E, Subramanian A, et al. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience. 2022;25:104097. doi: 10.1016/j.isci.2022.104097. PubMed DOI PMC
Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20:197–210. doi: 10.1038/s41569-022-00770-1. PubMed DOI PMC
Nakagawa T, Tanabe K, Croker BP, Johnson RJ, Grant MB, Kosugi T, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011;7:36–44. doi: 10.1038/nrneph.2010.152. PubMed DOI PMC
Tang X, Miao Y, Luo Y, Sriram K, Qi Z, Lin FM, et al. Suppression of endothelial AGO1 promotes adipose tissue browning and improves metabolic dysfunction. Circulation. 2020;142:365–379. doi: 10.1161/CIRCULATIONAHA.119.041231. PubMed DOI PMC
Daubon T, Leon C, Clarke K, Andrique L, Salabert L, Darbo E, et al. Deciphering the complex role of thrombospondin-1 in glioblastoma development. Nat Commun. 2019;10:1146. doi: 10.1038/s41467-019-08480-y. PubMed DOI PMC
Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, et al. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022;102:1291–1304. doi: 10.1016/j.kint.2022.08.026. PubMed DOI PMC
Mylroie H, Dumont O, Bauer A, Thornton CC, Mackey J, Calay D, et al. PKCepsilon-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res. 2015;106:509–519. doi: 10.1093/cvr/cvv131. PubMed DOI PMC
Yun JH, Park SW, Kim KJ, Bae JS, Lee EH, Paek SH, et al. Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy. J Cell Physiol. 2017;232:1123–1134. doi: 10.1002/jcp.25575. PubMed DOI
Wu F, Wang JY, Dorman B, Zeineddin A, Kozar RA. c-Jun-mediated miR-19b expression induces endothelial barrier dysfunction in an in vitro model of hemorrhagic shock. Mol Med. 2022;28:123. doi: 10.1186/s10020-022-00550-0. PubMed DOI PMC