Human pressures threaten diet-specialized mammal communities
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Environment and Climate Change Canada (ECCC) and the Natural Sciences and Engineering Research Council (NSERC)
PubMed
39904389
PubMed Central
PMC11793962
DOI
10.1098/rspb.2024.1735
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, community, diet specialization, human footprint, mammal species, protected areas network,
- MeSH
- antropogenní vlivy * MeSH
- biodiverzita MeSH
- dieta * MeSH
- ekosystém MeSH
- lidé MeSH
- savci * fyziologie MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Environmental change is increasing worldwide and many animal species face anthropogenic threats, especially diet specialists. Yet the degree to which specialist species are currently impacted by environmental change remains poorly understood. We examine how anthropogenic pressures impact dietary specialist species. We calculated indices of diet specialization for mammal species, based on the Gini inequality coefficient, and combined these indices with human pressure data. We then used spatially explicit Mantel tests to examine global patterns in mammal diet specialization. We used a generalized linear mixed model to investigate correlations between the percentage of diet specialist species in mammal communities in an area and its total species richness, human pressure and protection status (mediated through an interaction with the continent). Findings revealed that areas with many diet specialists in mammal communities are also impacted by high human pressure. Additionally, we found that the global protected area system adequately covers habitat for many mammal diet specialists, but has lower effectiveness in South America, Oceania, North America and Europe compared with Africa and Asia. Finally, we identified potential reservoirs for specialist species-places containing many highly diet specialist species and that are subject to less human pressure-which may be important for conservation efforts.
Department of Biology Carleton University Ottawa ON K1S 5B6 Canada
Department of Life and Environmental Sciences Bournemouth University Fern Barrow Poole BH12 5BB UK
Zobrazit více v PubMed
Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and Ecosystem Functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. (10.1146/annurev-ecolsys-120213-091917) DOI
Balvanera P, Pfisterer AB, Buchmann N, He J, Nakashizuka T, Raffaelli D, Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. (10.1111/j.1461-0248.2006.00963.x) PubMed DOI
Rasmann S, Agrawal AA. 2011. Evolution of Specialization: A Phylogenetic Study of Host Range in the Red Milkweed Beetle (Tetraopes tetraophthalmus). Am. Nat. 177, 728–737. (10.1086/659948) PubMed DOI
Morelli F, Benedetti Y, Møller AP, Fuller RA. 2019. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. (10.1002/ece3.5419) PubMed DOI PMC
Colles A, Liow LH, Prinzing A. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863. (10.1111/j.1461-0248.2009.01336.x) PubMed DOI PMC
Begon M, Townsend C, Harper J. 2006. Ecology: from individuals to ecosystems, 4th edn. Oxford, UK: John Wiley & Sons, Ltd.
Balisi M, Casey C, Van Valkenburgh B. 2018. Dietary specialization is linked to reduced species durations in North American fossil canids. R. Soc. Open Sci. 5, 171861. (10.1098/rsos.171861) PubMed DOI PMC
Sierro A, Arlettaz R. 1997. Barbastelle bats (Barbastella spp.) specialize in the predation of moths: implications for foraging tactics and conservation. Acta Oecologica 18, 91–106. (10.1016/s1146-609x(97)80067-7) DOI
Laurance WF. 1991. Ecological Correlates of Extinction Proneness in Australian Tropical Rain Forest Mammals. Conserv. Biol. 5, 79–89. (10.1111/j.1523-1739.1991.tb00390.x) DOI
Di Marco M, Collen B, Rondinini C, Mace GM. 2015. Historical drivers of extinction risk: using past evidence to direct future monitoring. Proc. R. Soc. B 282, 20150928. (10.1098/rspb.2015.0928) PubMed DOI PMC
González-Suárez M, Gómez A, Revilla E. 2013. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 1–16. (10.1890/es12-00380.1) DOI
Chichorro F, et al. . 2022. Trait-based prediction of extinction risk across terrestrial taxa. Biol. Conserv. 274, 109738. (10.1016/j.biocon.2022.109738) DOI
Callaghan CT, Benedetti Y, Wilshire JH, Morelli F. 2020. Avian trait specialization is negatively associated with urban tolerance. Oikos 129, 1541–1551. (10.1111/oik.07356) DOI
Benedetti Y, Morelli F, Callaghan CT, Fuller R. 2022. Distribution and protection of avian specialization in Europe. Glob. Ecol. Biogeogr. 31, 10–24. (10.1111/geb.13405) DOI
Santangeli A, Mammola S, Lehikoinen A, Rajasärkkä A, Lindén A, Saastamoinen M. 2022. The effects of protected areas on the ecological niches of birds and mammals. Sci. Rep. 12, 12. (10.1038/s41598-022-15949-2) PubMed DOI PMC
Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228. (10.1890/080216) DOI
Gossner MM, et al. . 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269. (10.1038/nature20575) PubMed DOI
Bowyer RT, Boyce MS, Goheen JR, Rachlow JL. 2019. Conservation of the world’s mammals: status, protected areas, community efforts, and hunting. J. Mammal. 100, 923–941. (10.1093/jmammal/gyy180) DOI
Visconti P, et al. . 2011. Future hotspots of terrestrial mammal loss. Phil. Trans. R. Soc. B 366, 2693–2702. (10.1098/rstb.2011.0105) PubMed DOI PMC
IUCN . 2023. The IUCN Red List of Threatened Species. version 2024-2. See https://www.iucnredlist.org/.
Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447. (10.1890/070062) DOI
Williams BA, et al. . 2020. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 3, 371–382. (10.1016/j.oneear.2020.08.009) DOI
Theobald DM. 2013. A general model to quantify ecological integrity for landscape assessments and US application. Landsc. Ecol. 28, 1859–1874. (10.1007/s10980-013-9941-6) DOI
Venter O, et al. . 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. (10.1038/ncomms12558) PubMed DOI PMC
Trombulak SC, Baldwin RF, Woolmer G. 2010. The Human Footprint as a Conservation Planning Tool. In Landscape-scale conservation planning (eds Trombulak S, Baldwin R), pp. 281–301. Dordrecht, The Netherlands: Springer. (10.1007/978-90-481-9575-6_13) DOI
Rosas YM, Peri PL, Pidgeon AM, Politi N, Pedrana J, Díaz-Delgado R, Pastur GM. 2021. Human footprint defining conservation strategies in Patagonian landscapes: Where we are and where we want to go? J. Nat. Conserv. 59, 125946. (10.1016/j.jnc.2020.125946) DOI
Watson DM, Herring M. 2012. Mistletoe as a keystone resource: an experimental test. Proc. R. Soc. B 279, 3853–3860. (10.1098/rspb.2012.0856) PubMed DOI PMC
UNEP-WCMC IUCN and NGS . 2018. Protected Planet Report 2018: Tracking progress towards global targets for protected areas https://protectedplanetreport2020.protectedplanet.net/pdf/Protected_Planet_Report_2018.pdf
Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405, 243–253. (10.1038/35012251) PubMed DOI
Hoffmann S, Beierkuhnlein C, Field R, Provenzale A, Chiarucci A. 2018. Uniqueness of Protected Areas for Conservation Strategies in the European Union. Sci. Rep. 8, 14. (10.1038/s41598-018-24390-3) PubMed DOI PMC
Hanson JO, Rhodes JR, Butchart SHM, Buchanan GM, Rondinini C, Ficetola GF, Fuller RA. 2020. Global conservation of species’ niches. Nature 580, 232–234. (10.1038/s41586-020-2138-7) PubMed DOI
Fleishman E, Noss RF, Noon BR. 2006. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6, 543–553. (10.1016/j.ecolind.2005.07.005) DOI
Maes D, Bauwens D, De Bruyn L, Anselin A, Vermeersch G, Van Landuyt W, De Knijf G, Gilbert M. 2005. Species richness coincidence: conservation strategies based on predictive modelling. Biodivers. Conserv. 14, 1345–1364. (10.1007/s10531-004-9662-x) DOI
Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Moritz C, Possingham HP. 2017. Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat. Ecol. Evol. 1, 151. (10.1038/s41559-017-0151) PubMed DOI
Morelli F, Benedetti Y, Hanson JO, Fuller RA. 2021. Global distribution and conservation of avian diet specialization. Conserv. Lett. 14, e12795. (10.1111/conl.12795) DOI
Coad L, et al. . 2015. Measuring impact of protected area management interventions: current and future use of the Global Database of Protected Area Management Effectiveness. Phil. Trans. R. Soc. B 370, 20140281. (10.1098/rstb.2014.0281) PubMed DOI PMC
Watson JEM, Dudley N, Segan DB, Hockings M. 2014. The performance and potential of protected areas. Nature 515, 67–73. (10.1038/nature13947) PubMed DOI
Boyles JG, Storm JJ. 2007. The Perils of Picky Eating: Dietary Breadth Is Related to Extinction Risk in Insectivorous Bats. PLoS One 2, e672. (10.1371/journal.pone.0000672) PubMed DOI PMC
Brooks TM, et al. . 2019. Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986. (10.1016/j.tree.2019.06.009) PubMed DOI
Lumbierres M, Dahal PR, Soria CD, Di Marco M, Butchart SHM, Donald PF, Rondinini C. 2022. Area of Habitat maps for the world’s terrestrial birds and mammals. Sci. Data 9, 749. (10.1038/s41597-022-01838-w) PubMed DOI PMC
Hanson JO. 2023. aoh: Create Area of Habitat Data. See https://github.com/prioritizr/aoh.
Robinson N, Regetz J, Guralnick RP. 2014. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67. (10.1016/j.isprsjprs.2013.11.002) DOI
Lumbierres M, Dahal PR, Di Marco M, Butchart SHM, Donald PF, Rondinini C. 2022. Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conserv. Biol. 36, e13851. (10.1111/cobi.13851) PubMed DOI PMC
Nania D, Lumbierres M, Ficetola G, Falaschi M, Pacifici M, Rondinini C. 2022. Maps of area of habitat for Italian amphibians and reptiles. Nat. Conserv. 49, 117–129. (10.3897/natureconservation.49.82931) DOI
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. 2014. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. (10.1890/13-1917.1) DOI
Gastwirth JL. 1972. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 54, 306. (10.2307/1937992) DOI
Roeland S, et al. . 2019. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. J. For. Res. 30, 1981–1996. (10.1007/s11676-019-00916-x) DOI
Tryjanowski P, Morelli F, Møller AP. 2021. Urban birds: Urban avoiders, urban adapters and urban exploiters. In The routledge handbook of urban ecology (eds Douglas I, Anderson PML, Goode D, Houck MC, Maddox D, Nagendra H, Tan PY), pp. 399–411. London, UK: Routledge. (10.7326/0003-4819-136-3-200202050-00006) DOI
Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494. (10.1371/journal.pbio.3000494) PubMed DOI PMC
Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290. (10.1093/bioinformatics/btg412) PubMed DOI
Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593. (10.1093/bioinformatics/btq706) PubMed DOI PMC
Revell LJ, Chamberlain SA. 2014. Rphylip: an R interface for PHYLIP. Methods Ecol. Evol. 5, 976–981. (10.1111/2041-210x.12233) DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884. (10.1038/44766) PubMed DOI
Blomberg SP, Garland T Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910. (10.1046/j.1420-9101.2002.00472.x) DOI
Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756. (10.1111/j.2041-210x.2012.00196.x) DOI
Gittleman JL, Kot M. 1990. Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects. Syst. Zool. 39, 227. (10.2307/2992183) DOI
Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780. (10.1002/ece3.2051) PubMed DOI PMC
Butchart SHM, et al. . 2015. Shortfalls and Solutions for Meeting National and Global Conservation Area Targets. Conserv. Lett. 8, 329–337. (10.1111/conl.12158) DOI
Coetzer KL, Witkowski ETF, Erasmus BFN. 2014. Reviewing Biosphere Reserves Globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104. (10.1111/brv.12044) PubMed DOI
Hanson JO. 2022. wdpar: Interface to the World Database on Protected Areas. J. Open Source Softw. 7, 4594. (10.21105/joss.04594) DOI
ESRI . 2020. ArcGIS Desktop: Release 10.8.1. Redlands, CA: Environmental Systems Research Institute.
R.Development Core Team . 2023. R: A language and environment for statistical computing, v. 4.1.1. Vienna, Austria: R Foundation for Statistical Computing.
Jenks GF. 1967. The data model concept in statistical mapping. Int. Yearb. Cartogr 7, 186–190.
Menéndez‐Guerrero PA, Graham CH. 2013. Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography 36, 756–769. (10.1111/j.1600-0587.2012.07877.x) DOI
Valcu M, Kempenaers B. 2010. Spatial autocorrelation: an overlooked concept in behavioral ecology. Behav. Ecol. 21, 902–905. (10.1093/beheco/arq107) PubMed DOI PMC
Dray S, Dufour AB. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 22 1–20. (10.18637/jss.v022.i04) DOI
O’Farrell PJ, et al. . 2010. Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services. Landsc. Ecol. 25, 1231–1246. (10.1007/s10980-010-9495-9) DOI
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135. (10.1016/j.tree.2008.10.008) PubMed DOI
Browne WJ, Subramanian SV, Jones K, Goldstein H. 2005. Variance Partitioning in Multilevel Logistic Models that Exhibit Overdispersion. J. R. Stat. Soc. Ser. 168, 599–613. (10.1111/j.1467-985x.2004.00365.x) DOI
Brooks M., et al. . 2022. glmmTMB: Generalized Linear Mixed Models using Template Model Builder. Version 1.1.5. Link: https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf
Mittermeier RA, et al. . 2005. Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Arlington, VA: Conservation International.
Svanbäck R, Bolnick DI. 2007. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274, 839–844. (10.1098/rspb.2006.0198) PubMed DOI PMC
Fernández MH, Vrba ES. 2005. Body size, biomic specialization and range size of African large mammals. J. Biogeogr. 32, 1243–1256. (10.1111/j.1365-2699.2005.01270.x) DOI
Clavero M, Brotons L, Herrando S. 2011. Bird community specialization, bird conservation and disturbance: the role of wildfires. J. Anim. Ecol. 80, 128–136. (10.1111/j.1365-2656.2010.01748.x) PubMed DOI
Cooke RSC, Eigenbrod F, Bates AE. 2019. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 8. (10.1038/s41467-019-10284-z) PubMed DOI PMC
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner‐Riehl AN. 2015. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. (10.1111/brv.12107) PubMed DOI
Feijó A, Ge D, Wen Z, Cheng J, Xia L, Patterson BD, Yang Q. 2022. Mammalian diversification bursts and biotic turnovers are synchronous with Cenozoic geoclimatic events in Asia. Proc. Natl Acad. Sci. 119, e2207845119. (10.1073/pnas.2207845119) PubMed DOI PMC
Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. 2011. Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots (eds Zachos FE, Habel JC), pp. 3–22. Berlin, Heidelberg, Germany: Springer-Verlag.
Romano GM. 2017. A high resolution shapefile of the Andean biogeographical region. Data Brief 13, 230–232. (10.1016/j.dib.2017.05.039) PubMed DOI PMC
Mena Alvarez JL, Aguirre LF, Carrera JP, Gómez Cerveró H, Solari S. 2011. Small mammal diversity in the tropical Andes: an overview. In In climate change and biodiversity in the tropical andes (eds Martínez R, Jørgensen PM, Tiessen H), p. 348. Clayton, Panama: Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. (10.1038/35002501) PubMed DOI
Bax V, Francesconi W. 2019. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232, 387–396. (10.1016/j.jenvman.2018.11.086) PubMed DOI
Sarkar S, Sánchez-Cordero V, Londoño MC, Fuller T. 2009. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: a preliminary analysis. Biodivers. Conserv. 18, 1793–1828. (10.1007/s10531-008-9559-1) DOI
Geldmann J, Barnes M, Coad L, Craigie ID, Hockings M, Burgess ND. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. (10.1016/j.biocon.2013.02.018) DOI
Maiorano L, Falcucci A, Garton EO, Boitani L. 2007. Contribution of the Natura 2000 Network to Biodiversity Conservation in Italy. Conserv. Biol. 21, 1433–1444. (10.1111/j.1523-1739.2007.00831.x) PubMed DOI
Gaston KJ, et al. . 2006. The ecological effectiveness of protected areas: The United Kingdom. Biol. Conserv. 132, 76–87. (10.1016/j.biocon.2006.03.013) DOI
Ward M, Saura S, Williams B, Ramírez-Delgado JP, Arafeh-Dalmau N, Allan JR, Venter O, Dubois G, Watson JEM. 2020. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. (10.1038/s41467-020-18457-x) PubMed DOI PMC
Lewis AC, Hughes C, Rogers TL. 2022. Effects of intraspecific competition and body mass on diet specialization in a mammalian scavenger. Ecol. Evol. 12, e8338. (10.1002/ece3.8338) PubMed DOI PMC
Cincotta RP, Wisnewski J, Engelman R. 2000. Human population in the biodiversity hotspots. Nature 404, 990–992. (10.1038/35010105) PubMed DOI
Kosman E, Burgio KR, Presley SJ, Willig MR, Scheiner SM. 2019. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165. (10.1111/ddi.12923) DOI
Tan EYW, Neo ML, Huang D. 2022. Assessing taxonomic, functional and phylogenetic diversity of giant clams across the Indo‐Pacific for conservation prioritization. Divers. Distrib. 28, 2124–2138. (10.1111/ddi.13609) DOI
Lourenço-de-Moraes R, Campos FS, Cabral P, Silva-Soares T, Nobrega YC, Covre AC, França FGR. 2023. Global conservation prioritization areas in three dimensions of crocodilian diversity. Sci. Rep. 13, 2568. (10.1038/s41598-023-28413-6) PubMed DOI PMC
Morelli F, Hanson JO, Benedetti Y. 2024. Code and data for: Human pressures threaten diet-specialized mammal communities (1.0.1) [Dataset]. Zenodo. (10.5281/zenodo.14063969) PubMed DOI
Morelli F, Hanson JO, Benedetti Y. 2025. Supplementary material from: Human pressures threaten diet specialized mammal communities. Figshare (10.6084/m9.figshare.c.7652245) PubMed DOI
Human pressures threaten diet-specialized mammal communities