Human pressures threaten diet-specialized mammal communities

. 2025 Feb ; 292 (2040) : 20241735. [epub] 20250205

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39904389

Grantová podpora
Environment and Climate Change Canada (ECCC) and the Natural Sciences and Engineering Research Council (NSERC)

Environmental change is increasing worldwide and many animal species face anthropogenic threats, especially diet specialists. Yet the degree to which specialist species are currently impacted by environmental change remains poorly understood. We examine how anthropogenic pressures impact dietary specialist species. We calculated indices of diet specialization for mammal species, based on the Gini inequality coefficient, and combined these indices with human pressure data. We then used spatially explicit Mantel tests to examine global patterns in mammal diet specialization. We used a generalized linear mixed model to investigate correlations between the percentage of diet specialist species in mammal communities in an area and its total species richness, human pressure and protection status (mediated through an interaction with the continent). Findings revealed that areas with many diet specialists in mammal communities are also impacted by high human pressure. Additionally, we found that the global protected area system adequately covers habitat for many mammal diet specialists, but has lower effectiveness in South America, Oceania, North America and Europe compared with Africa and Asia. Finally, we identified potential reservoirs for specialist species-places containing many highly diet specialist species and that are subject to less human pressure-which may be important for conservation efforts.

Zobrazit více v PubMed

Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and Ecosystem Functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. (10.1146/annurev-ecolsys-120213-091917) DOI

Balvanera P, Pfisterer AB, Buchmann N, He J, Nakashizuka T, Raffaelli D, Schmid B. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156. (10.1111/j.1461-0248.2006.00963.x) PubMed DOI

Rasmann S, Agrawal AA. 2011. Evolution of Specialization: A Phylogenetic Study of Host Range in the Red Milkweed Beetle (Tetraopes tetraophthalmus). Am. Nat. 177, 728–737. (10.1086/659948) PubMed DOI

Morelli F, Benedetti Y, Møller AP, Fuller RA. 2019. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. (10.1002/ece3.5419) PubMed DOI PMC

Colles A, Liow LH, Prinzing A. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863. (10.1111/j.1461-0248.2009.01336.x) PubMed DOI PMC

Begon M, Townsend C, Harper J. 2006. Ecology: from individuals to ecosystems, 4th edn. Oxford, UK: John Wiley & Sons, Ltd.

Balisi M, Casey C, Van Valkenburgh B. 2018. Dietary specialization is linked to reduced species durations in North American fossil canids. R. Soc. Open Sci. 5, 171861. (10.1098/rsos.171861) PubMed DOI PMC

Sierro A, Arlettaz R. 1997. Barbastelle bats (Barbastella spp.) specialize in the predation of moths: implications for foraging tactics and conservation. Acta Oecologica 18, 91–106. (10.1016/s1146-609x(97)80067-7) DOI

Laurance WF. 1991. Ecological Correlates of Extinction Proneness in Australian Tropical Rain Forest Mammals. Conserv. Biol. 5, 79–89. (10.1111/j.1523-1739.1991.tb00390.x) DOI

Di Marco M, Collen B, Rondinini C, Mace GM. 2015. Historical drivers of extinction risk: using past evidence to direct future monitoring. Proc. R. Soc. B 282, 20150928. (10.1098/rspb.2015.0928) PubMed DOI PMC

González-Suárez M, Gómez A, Revilla E. 2013. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 1–16. (10.1890/es12-00380.1) DOI

Chichorro F, et al. . 2022. Trait-based prediction of extinction risk across terrestrial taxa. Biol. Conserv. 274, 109738. (10.1016/j.biocon.2022.109738) DOI

Callaghan CT, Benedetti Y, Wilshire JH, Morelli F. 2020. Avian trait specialization is negatively associated with urban tolerance. Oikos 129, 1541–1551. (10.1111/oik.07356) DOI

Benedetti Y, Morelli F, Callaghan CT, Fuller R. 2022. Distribution and protection of avian specialization in Europe. Glob. Ecol. Biogeogr. 31, 10–24. (10.1111/geb.13405) DOI

Santangeli A, Mammola S, Lehikoinen A, Rajasärkkä A, Lindén A, Saastamoinen M. 2022. The effects of protected areas on the ecological niches of birds and mammals. Sci. Rep. 12, 12. (10.1038/s41598-022-15949-2) PubMed DOI PMC

Clavel J, Julliard R, Devictor V. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228. (10.1890/080216) DOI

Gossner MM, et al. . 2016. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269. (10.1038/nature20575) PubMed DOI

Bowyer RT, Boyce MS, Goheen JR, Rachlow JL. 2019. Conservation of the world’s mammals: status, protected areas, community efforts, and hunting. J. Mammal. 100, 923–941. (10.1093/jmammal/gyy180) DOI

Visconti P, et al. . 2011. Future hotspots of terrestrial mammal loss. Phil. Trans. R. Soc. B 366, 2693–2702. (10.1098/rstb.2011.0105) PubMed DOI PMC

IUCN . 2023. The IUCN Red List of Threatened Species. version 2024-2. See https://www.iucnredlist.org/.

Ellis EC, Ramankutty N. 2008. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447. (10.1890/070062) DOI

Williams BA, et al. . 2020. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 3, 371–382. (10.1016/j.oneear.2020.08.009) DOI

Theobald DM. 2013. A general model to quantify ecological integrity for landscape assessments and US application. Landsc. Ecol. 28, 1859–1874. (10.1007/s10980-013-9941-6) DOI

Venter O, et al. . 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558. (10.1038/ncomms12558) PubMed DOI PMC

Trombulak SC, Baldwin RF, Woolmer G. 2010. The Human Footprint as a Conservation Planning Tool. In Landscape-scale conservation planning (eds Trombulak S, Baldwin R), pp. 281–301. Dordrecht, The Netherlands: Springer. (10.1007/978-90-481-9575-6_13) DOI

Rosas YM, Peri PL, Pidgeon AM, Politi N, Pedrana J, Díaz-Delgado R, Pastur GM. 2021. Human footprint defining conservation strategies in Patagonian landscapes: Where we are and where we want to go? J. Nat. Conserv. 59, 125946. (10.1016/j.jnc.2020.125946) DOI

Watson DM, Herring M. 2012. Mistletoe as a keystone resource: an experimental test. Proc. R. Soc. B 279, 3853–3860. (10.1098/rspb.2012.0856) PubMed DOI PMC

UNEP-WCMC IUCN and NGS . 2018. Protected Planet Report 2018: Tracking progress towards global targets for protected areas https://protectedplanetreport2020.protectedplanet.net/pdf/Protected_Planet_Report_2018.pdf

Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405, 243–253. (10.1038/35012251) PubMed DOI

Hoffmann S, Beierkuhnlein C, Field R, Provenzale A, Chiarucci A. 2018. Uniqueness of Protected Areas for Conservation Strategies in the European Union. Sci. Rep. 8, 14. (10.1038/s41598-018-24390-3) PubMed DOI PMC

Hanson JO, Rhodes JR, Butchart SHM, Buchanan GM, Rondinini C, Ficetola GF, Fuller RA. 2020. Global conservation of species’ niches. Nature 580, 232–234. (10.1038/s41586-020-2138-7) PubMed DOI

Fleishman E, Noss RF, Noon BR. 2006. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6, 543–553. (10.1016/j.ecolind.2005.07.005) DOI

Maes D, Bauwens D, De Bruyn L, Anselin A, Vermeersch G, Van Landuyt W, De Knijf G, Gilbert M. 2005. Species richness coincidence: conservation strategies based on predictive modelling. Biodivers. Conserv. 14, 1345–1364. (10.1007/s10531-004-9662-x) DOI

Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Moritz C, Possingham HP. 2017. Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat. Ecol. Evol. 1, 151. (10.1038/s41559-017-0151) PubMed DOI

Morelli F, Benedetti Y, Hanson JO, Fuller RA. 2021. Global distribution and conservation of avian diet specialization. Conserv. Lett. 14, e12795. (10.1111/conl.12795) DOI

Coad L, et al. . 2015. Measuring impact of protected area management interventions: current and future use of the Global Database of Protected Area Management Effectiveness. Phil. Trans. R. Soc. B 370, 20140281. (10.1098/rstb.2014.0281) PubMed DOI PMC

Watson JEM, Dudley N, Segan DB, Hockings M. 2014. The performance and potential of protected areas. Nature 515, 67–73. (10.1038/nature13947) PubMed DOI

Boyles JG, Storm JJ. 2007. The Perils of Picky Eating: Dietary Breadth Is Related to Extinction Risk in Insectivorous Bats. PLoS One 2, e672. (10.1371/journal.pone.0000672) PubMed DOI PMC

Brooks TM, et al. . 2019. Measuring Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986. (10.1016/j.tree.2019.06.009) PubMed DOI

Lumbierres M, Dahal PR, Soria CD, Di Marco M, Butchart SHM, Donald PF, Rondinini C. 2022. Area of Habitat maps for the world’s terrestrial birds and mammals. Sci. Data 9, 749. (10.1038/s41597-022-01838-w) PubMed DOI PMC

Hanson JO. 2023. aoh: Create Area of Habitat Data. See https://github.com/prioritizr/aoh.

Robinson N, Regetz J, Guralnick RP. 2014. EarthEnv-DEM90: A nearly-global, void-free, multi-scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67. (10.1016/j.isprsjprs.2013.11.002) DOI

Lumbierres M, Dahal PR, Di Marco M, Butchart SHM, Donald PF, Rondinini C. 2022. Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conserv. Biol. 36, e13851. (10.1111/cobi.13851) PubMed DOI PMC

Nania D, Lumbierres M, Ficetola G, Falaschi M, Pacifici M, Rondinini C. 2022. Maps of area of habitat for Italian amphibians and reptiles. Nat. Conserv. 49, 117–129. (10.3897/natureconservation.49.82931) DOI

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. 2014. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. (10.1890/13-1917.1) DOI

Gastwirth JL. 1972. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 54, 306. (10.2307/1937992) DOI

Roeland S, et al. . 2019. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. J. For. Res. 30, 1981–1996. (10.1007/s11676-019-00916-x) DOI

Tryjanowski P, Morelli F, Møller AP. 2021. Urban birds: Urban avoiders, urban adapters and urban exploiters. In The routledge handbook of urban ecology (eds Douglas I, Anderson PML, Goode D, Houck MC, Maddox D, Nagendra H, Tan PY), pp. 399–411. London, UK: Routledge. (10.7326/0003-4819-136-3-200202050-00006) DOI

Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494. (10.1371/journal.pbio.3000494) PubMed DOI PMC

Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290. (10.1093/bioinformatics/btg412) PubMed DOI

Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593. (10.1093/bioinformatics/btq706) PubMed DOI PMC

Revell LJ, Chamberlain SA. 2014. Rphylip: an R interface for PHYLIP. Methods Ecol. Evol. 5, 976–981. (10.1111/2041-210x.12233) DOI

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877–884. (10.1038/44766) PubMed DOI

Blomberg SP, Garland T Jr. 2002. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910. (10.1046/j.1420-9101.2002.00472.x) DOI

Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756. (10.1111/j.2041-210x.2012.00196.x) DOI

Gittleman JL, Kot M. 1990. Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects. Syst. Zool. 39, 227. (10.2307/2992183) DOI

Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780. (10.1002/ece3.2051) PubMed DOI PMC

Butchart SHM, et al. . 2015. Shortfalls and Solutions for Meeting National and Global Conservation Area Targets. Conserv. Lett. 8, 329–337. (10.1111/conl.12158) DOI

Coetzer KL, Witkowski ETF, Erasmus BFN. 2014. Reviewing Biosphere Reserves Globally: effective conservation action or bureaucratic label? Biol. Rev. 89, 82–104. (10.1111/brv.12044) PubMed DOI

Hanson JO. 2022. wdpar: Interface to the World Database on Protected Areas. J. Open Source Softw. 7, 4594. (10.21105/joss.04594) DOI

ESRI . 2020. ArcGIS Desktop: Release 10.8.1. Redlands, CA: Environmental Systems Research Institute.

R.Development Core Team . 2023. R: A language and environment for statistical computing, v. 4.1.1. Vienna, Austria: R Foundation for Statistical Computing.

Jenks GF. 1967. The data model concept in statistical mapping. Int. Yearb. Cartogr 7, 186–190.

Menéndez‐Guerrero PA, Graham CH. 2013. Evaluating multiple causes of amphibian declines of Ecuador using geographical quantitative analyses. Ecography 36, 756–769. (10.1111/j.1600-0587.2012.07877.x) DOI

Valcu M, Kempenaers B. 2010. Spatial autocorrelation: an overlooked concept in behavioral ecology. Behav. Ecol. 21, 902–905. (10.1093/beheco/arq107) PubMed DOI PMC

Dray S, Dufour AB. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 22 1–20. (10.18637/jss.v022.i04) DOI

O’Farrell PJ, et al. . 2010. Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services. Landsc. Ecol. 25, 1231–1246. (10.1007/s10980-010-9495-9) DOI

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135. (10.1016/j.tree.2008.10.008) PubMed DOI

Browne WJ, Subramanian SV, Jones K, Goldstein H. 2005. Variance Partitioning in Multilevel Logistic Models that Exhibit Overdispersion. J. R. Stat. Soc. Ser. 168, 599–613. (10.1111/j.1467-985x.2004.00365.x) DOI

Brooks M., et al. . 2022. glmmTMB: Generalized Linear Mixed Models using Template Model Builder. Version 1.1.5. Link: https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf

Mittermeier RA, et al. . 2005. Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Arlington, VA: Conservation International.

Svanbäck R, Bolnick DI. 2007. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B 274, 839–844. (10.1098/rspb.2006.0198) PubMed DOI PMC

Fernández MH, Vrba ES. 2005. Body size, biomic specialization and range size of African large mammals. J. Biogeogr. 32, 1243–1256. (10.1111/j.1365-2699.2005.01270.x) DOI

Clavero M, Brotons L, Herrando S. 2011. Bird community specialization, bird conservation and disturbance: the role of wildfires. J. Anim. Ecol. 80, 128–136. (10.1111/j.1365-2656.2010.01748.x) PubMed DOI

Cooke RSC, Eigenbrod F, Bates AE. 2019. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 8. (10.1038/s41467-019-10284-z) PubMed DOI PMC

Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner‐Riehl AN. 2015. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. (10.1111/brv.12107) PubMed DOI

Feijó A, Ge D, Wen Z, Cheng J, Xia L, Patterson BD, Yang Q. 2022. Mammalian diversification bursts and biotic turnovers are synchronous with Cenozoic geoclimatic events in Asia. Proc. Natl Acad. Sci. 119, e2207845119. (10.1073/pnas.2207845119) PubMed DOI PMC

Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. 2011. Global biodiversity conservation: the critical role of hotspots. In Biodiversity hotspots (eds Zachos FE, Habel JC), pp. 3–22. Berlin, Heidelberg, Germany: Springer-Verlag.

Romano GM. 2017. A high resolution shapefile of the Andean biogeographical region. Data Brief 13, 230–232. (10.1016/j.dib.2017.05.039) PubMed DOI PMC

Mena Alvarez JL, Aguirre LF, Carrera JP, Gómez Cerveró H, Solari S. 2011. Small mammal diversity in the tropical Andes: an overview. In In climate change and biodiversity in the tropical andes (eds Martínez R, Jørgensen PM, Tiessen H), p. 348. Clayton, Panama: Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE).

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. (10.1038/35002501) PubMed DOI

Bax V, Francesconi W. 2019. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232, 387–396. (10.1016/j.jenvman.2018.11.086) PubMed DOI

Sarkar S, Sánchez-Cordero V, Londoño MC, Fuller T. 2009. Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: a preliminary analysis. Biodivers. Conserv. 18, 1793–1828. (10.1007/s10531-008-9559-1) DOI

Geldmann J, Barnes M, Coad L, Craigie ID, Hockings M, Burgess ND. 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. (10.1016/j.biocon.2013.02.018) DOI

Maiorano L, Falcucci A, Garton EO, Boitani L. 2007. Contribution of the Natura 2000 Network to Biodiversity Conservation in Italy. Conserv. Biol. 21, 1433–1444. (10.1111/j.1523-1739.2007.00831.x) PubMed DOI

Gaston KJ, et al. . 2006. The ecological effectiveness of protected areas: The United Kingdom. Biol. Conserv. 132, 76–87. (10.1016/j.biocon.2006.03.013) DOI

Ward M, Saura S, Williams B, Ramírez-Delgado JP, Arafeh-Dalmau N, Allan JR, Venter O, Dubois G, Watson JEM. 2020. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 11, 4563. (10.1038/s41467-020-18457-x) PubMed DOI PMC

Lewis AC, Hughes C, Rogers TL. 2022. Effects of intraspecific competition and body mass on diet specialization in a mammalian scavenger. Ecol. Evol. 12, e8338. (10.1002/ece3.8338) PubMed DOI PMC

Cincotta RP, Wisnewski J, Engelman R. 2000. Human population in the biodiversity hotspots. Nature 404, 990–992. (10.1038/35010105) PubMed DOI

Kosman E, Burgio KR, Presley SJ, Willig MR, Scheiner SM. 2019. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165. (10.1111/ddi.12923) DOI

Tan EYW, Neo ML, Huang D. 2022. Assessing taxonomic, functional and phylogenetic diversity of giant clams across the Indo‐Pacific for conservation prioritization. Divers. Distrib. 28, 2124–2138. (10.1111/ddi.13609) DOI

Lourenço-de-Moraes R, Campos FS, Cabral P, Silva-Soares T, Nobrega YC, Covre AC, França FGR. 2023. Global conservation prioritization areas in three dimensions of crocodilian diversity. Sci. Rep. 13, 2568. (10.1038/s41598-023-28413-6) PubMed DOI PMC

Morelli F, Hanson JO, Benedetti Y. 2024. Code and data for: Human pressures threaten diet-specialized mammal communities (1.0.1) [Dataset]. Zenodo. (10.5281/zenodo.14063969) PubMed DOI

Morelli F, Hanson JO, Benedetti Y. 2025. Supplementary material from: Human pressures threaten diet specialized mammal communities. Figshare (10.6084/m9.figshare.c.7652245) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Human pressures threaten diet-specialized mammal communities

. 2025 Feb ; 292 (2040) : 20241735. [epub] 20250205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...