Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39904879
DOI
10.1007/s12223-025-01243-x
PII: 10.1007/s12223-025-01243-x
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilm, Drinking water distribution system, Nano-coating, Silicon dioxide, Slaughterhouse, Swine,
- Publikační typ
- časopisecké články MeSH
A recently discovered source for infection of slaughter pigs, and thus entry for bacteria into the food chain, is the installed drinking equipment in lairage pens of pig abattoirs. To mitigate this, nano-coating of stainless steel, currently used in human medicine fields as well as in other parts of the food chain, appears as promising technology. In this study, silicon dioxide nano-coating was applied to six drinkers and installed for one and three months in a lairage of a pig abattoir, while results were compared with those of drinkers that had not been nano-coated. Laboratory examination of eight sample types related to the drinkers was conducted for total aerobic plate count, Enterobacteriaceae count, Pseudomonas spp. count, Salmonella presence, pathogenic Yersinia enterocolitica presence, Listeria monocytogenes presence and methicillin-resistant Staphylococcus aureus presence. The nipple drinker, which the pigs take into their mouth for drinking, was then examined using scanning electron microscopy and elemental analysis. The nano-coating did not produce statistically significant reductions in the loads or presence of these bacteria compared to the same but uncoated drinking equipment used under the same conditions. Further studies should focus on the implementation of combined methods, such as nano-coating and sanitary treatment, as well as modifications to the coating itself, to produce meaningful reductions of the bacterial loads on/in abattoir lairage drinking equipment.
Zobrazit více v PubMed
Amirsoleimani M, Khalilzadeh MA, Sadeghifar F, Sadeghifar H (2018) Surface modification of nanosatrch using nano silver: a potential antibacterial for food package coating. J Food Sci Technol 55:899–904. https://doi.org/10.1007/s13197-017-2996-7 PubMed DOI PMC
Autio T, Markkula A, Hellström S, Niskanen T, Lundén J, Korkeala H (2004) Prevalence and genetic diversity of Listeria monocytogenes in the tonsils of pigs. J Food Prot 67:805–808. https://doi.org/10.4315/0362-028x-67.4.805 PubMed DOI
Banerjee D, Shivapriya PM, Gautam PK, Misra K, Sahoo AK, Samanta SK (2019) A Review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proc Natl Acad Sci India Sect B Biol Sci 90:243–259. https://doi.org/10.1007/s40011-018-01065-7 DOI
Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. https://doi.org/10.1002/adma.201001215 PubMed DOI
Blaeske V, Schumann-Muck FM, Hamedy A, Braun PG, Koethe M (2023) Campylobacter colonisation of slaughterhouse surfaces may be affected by ultra-thin silica coating. AIMS Agric Food 9:52–68. https://doi.org/10.3934/agrfood.2024004 DOI
Blaeske V, Schumann-Muck FM, Hamedy A, Braun PG, Koethe M (2024) Influence of a nanoscale coating on plucking fingers and stainless steel on attachment and detachment of Salmonella Enteritidis. Escherichia Coli and Campylobacter Jejuni Folia Microbiol (Praha). https://doi.org/10.1007/s12223-024-01162-3
Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, Wagner M (1999) Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. Appl Environ Microbiol 65:4688–4692. https://doi.org/10.1128/aem.65.10.4688-4692.1999 PubMed DOI PMC
Buder C, Meemken D, Fürstenberg R, Langforth S, Kirse A, and Langkabel N (2023) Drinking pipes and nipple drinkers in pig abattoir lairage pens-a source of zoonotic pathogens as a hazard to meat safety. Microorganisms 11. https://doi.org/10.3390/microorganisms11102554
BVL L 59.00:2010–01 (2010) Untersuchung von Lebensmitteln - Allgemeine Hinweise zur Probenahme und zur mikrobiologischen Untersuchung von natürlichem Mineralwasser, Quell- und Tafelwasser, Beuth Verlag Berlin, Germany
BVL L 59.00–5:1988–05 (1988) Untersuchung von Lebensmitteln; Bestimmung der Koloniezahl in natürlichem Mineralwasser, Quell- und Tafelwasser; Referenzverfahren, Beuth Verlag Berlin, Germany
Byrd JJ, Xu HS, Colwell RR (1991) Viable but nonculturable bacteria in drinking water. Appl Environ Microbiol 57:875–878. https://doi.org/10.1128/aem.57.3.875-878.1991 PubMed DOI PMC
Cruz-Lopes L, Macena M, Guiné RPF (2021) Application of nanotechnologies along the food supply chain. Open Agric 6:749–760. https://doi.org/10.1515/opag-2021-0052 DOI
Deane A, Murphy D, Leonard FC, Byrne W, Clegg T, Madigan G, Griffin M, Egan J, Prendergast DM (2022) Prevalence of Salmonella spp. in slaughter pigs and carcasses in Irish abattoirs and their antimicrobial resistance. Ir Vet J 75:4. https://doi.org/10.1186/s13620-022-00211-y PubMed DOI PMC
Di Cerbo A, Mescola A, Rosace G, Stocchi R, Rossi G, Alessandrini A, Preziuso S, Scarano A, Rea S, Loschi AR, Sabia C (2021) Antibacterial effect of stainless steel surfaces treated with a nanotechnological coating approved for food contact. Microorganisms 9. https://doi.org/10.3390/microorganisms9020248 PubMed DOI PMC
Díaz C, Schilardi PL, Salvarezza RC, Lorenzo F, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23:11206–11210. https://doi.org/10.1021/la700650q PubMed DOI
Diaz Villanueva V, Font J, Schwartz T, Romani AM (2011) Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27:59–71. https://doi.org/10.1080/08927014.2010.538841 PubMed DOI
DIN 10161:2016–12 (2016) Microbiological analysis of meat and meat products - aerobic count at 30 °C - drop plating method, Deutsches Institut für Normung e.V., Berlin, Germany
DIN 10164–2:2019–06 (2019) Microbiological examination of meat and meat products - determination of Enterobacteriaceae - part 2: drop plating method, Deutsches Institut für Normung e.V., Berlin, Germany
DIN 10113–1:2023–02 (2023) Horizontal method for the determination of surface colony count and detection of specific microorganisms on fitment and utensils along the food chain - part 1: swab method, Deutsches Institut für Normung e.V., Berlin, Germany
DIN EN ISO 13720:2010–12 (2010) Meat and meat products - enumeration of presumptive Pseudomonas spp. (ISO 13720:2010), International Organization for Standardization, Geneva, Switzerland
DIN EN ISO 10273:2017–08 (2017) Microbiology of the food chain - horizontal method for the detection of pathogenic Yersinia enterocolitica (ISO 10273:2017), International Organization for Standardization, Geneva, Switzerland
DIN EN ISO 11290–1:2017–09 (2017) Microbiology of the food chain - horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. - part 1: detection method (ISO 11290–1:2017), International Organization for Standardization, Geneva, Switzerland
DIN EN ISO 18593:2018–10 (2018) Microbiology of the food chain - horizontal methods for surface sampling (ISO 18593:2018), International Organization for Standardization, Geneva, Switzerland
DIN EN ISO 6579–1:2020–08 (2020) Microbiology of the food chain - horizontal method for the detection, enumeration and serotyping of Salmonella - part 1: detection of Salmonella spp. (ISO 6579–1:2017 + Amd.1:2020), International Organization for Standardization, Geneva, Switzerland
DIN EN ISO 6888–1:2022–06 (2022) Microbiology of the food chain - horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - part 1: method using Baird-Parker agar medium (ISO 6888–1:2021), International Organization for Standardization, Geneva, Switzerland
Ferraris M, Perero S, Ferraris S, Miola M, Vernè E, Skoglund S, Blomberg E, Odnevall Wallinder I (2017) Antibacterial silver nanocluster/silica composite coatings on stainless steel. Appl Surf Sci 396:1546–1555. https://doi.org/10.1016/j.apsusc.2016.11.207 DOI
Ferreira C, Pereira AM, Melo LF, and Simões M (2010) Advances in industrial biofilm control with micro-nanotechnology. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, 2nd edn. Formatex, Badajoz, pp 845–854. https://www.researchgate.net/profile/Ana-Pereira-179/publication/234046396_Advances_in_industrial_biofilm_control_with_micro-nanotechnology/links/00b495192a96300bc9000000/Advances-in-industrial-biofilm-control-with-micro-nanotechnology.pdf
Garzetti D, Susen R, Fruth A, Tietze E, Heesemann J, Rakin A (2014) A molecular scheme for Yersinia enterocolitica patho-serotyping derived from genome-wide analysis. Int J Med Microbiol 304:275–283. https://doi.org/10.1016/j.ijmm.2013.10.007 PubMed DOI
Gião MS, Keevil CW (2014) Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microb Ecol 67:603–611. https://doi.org/10.1007/s00248-013-0364-3 PubMed DOI
Grimont PAD, Weill F (2007) Antigenic formulae of the Salmonella serovars, 9th edn. WHO collaborating centre for reference and research on Salmonella, Institute Pastuer, Paris.
Guo L, Wan K, Zhu J, Ye C, Chabi K, Yu X (2021) Detection and distribution of vbnc/viable pathogenic bacteria in full-scale drinking water treatment plants. J Hazard Mater 406. https://doi.org/10.1016/j.jhazmat.2020.124335 PubMed DOI
Hamad AF, Han J-H, Kim B-C, Rather IA (2018) The intertwine of nanotechnology with the food industry. Saudi J Biol Sci 25:27–30. https://doi.org/10.1016/j.sjbs.2017.09.004 PubMed DOI
Hillig N, Schumann-Muck F, Hamedy A, Braun PG, Koethe M (2023) Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes. Folia Microbiol (Praha). https://doi.org/10.1007/s12223-023-01089-1 PubMed DOI
Hurd HS, Gailey JK, McKean JD, Rostagno MH (2001) Rapid infection in market-weight swine following exposure to a Salmonella typhimurium-contaminated environment. Am J Vet Res 62:1194–1197. https://doi.org/10.2460/ajvr.2001.62.1194 PubMed DOI
Ivanova EP, Hasan J, Truong VK, Wang JY, Raveggi M, Fluke C, Crawford RJ (2011) The influence of nanoscopically thin silver films on bacterial viability and attachment. Appl Microbiol Biotechnol 91:1149–1157. https://doi.org/10.1007/s00253-011-3195-5 PubMed DOI
Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res A 88:448–453. https://doi.org/10.1002/jbm.a.31759 PubMed DOI
Jonas D, Speck M, Daschner FD, Grundmann H (2002) Rapid PCR-based identification of methicillin-resistant Staphylococcus aureus from screening swabs. J Clin Microbiol 40:1821–1823. https://doi.org/10.1128/jcm.40.5.1821-1823.2002 PubMed DOI PMC
Jouy E, Le Roux A, Kéranflec’h A, Granier SA, Laurent F, Kempf I, Brisabois A, Cariolet R, Chauvin C (2012) Methicillin-resistant Staphylococcus aureus ST398 contamination and transmission in pigs after a low dose inoculation. Lett Appl Microbiol 54:518–523. https://doi.org/10.1111/j.1472-765X.2012.03239.x PubMed DOI
Lewis HC, Mølbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, Skov RL (2008) Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg Infect Dis 14:1383–1389. https://doi.org/10.3201/eid1409.071576 PubMed DOI PMC
Lukowski G, Weihe T, Köhnlein J, Schlüter R, Schultze N, Quade A, Wendler C, Rackow K, Dittrich A, Werner S, Ehlbeck J, Weltmann KD (2019) Renewable nano-structured coatings on medical devices prevent the transmission of clinically relevant pathogens. Surf Coat Technol 366:227–237. https://doi.org/10.1016/j.surfcoat.2019.02.066 DOI
Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res A 84:425–435. https://doi.org/10.1002/jbm.a.31323 PubMed DOI
Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822. https://doi.org/10.1016/j.biomaterials.2012.01.018 PubMed DOI
Neoh KG, Kang ET (2011) Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. ACS Appl Mater Interfaces 3:2808–2819. https://doi.org/10.1021/am200646t PubMed DOI
Nesbakken T, Eckner K, Hoidal HK, Rotterud OJ (2003) Occurrence of Yersinia enterocolitica and Campylobacter spp. in slaughter pigs and consequences for meat inspection, slaughtering, and dressing procedures. Int J Food Microbiol 80:231–240. https://doi.org/10.1016/s0168-1605(02)00165-4 PubMed DOI
Olczak K, Nowicki J, Klocek C (2015) Pig behaviour in relation to weather conditions – a review. Ann Anim Sci 15:601–610. https://doi.org/10.1515/aoas-2015-0024 DOI
Oswaldi V, Dzierzon J, Thieme S, Merle R, Meemken D (2021) Slaughter pigs as carrier of Listeria monocytogenes in Germany. J Consum Prot Food Saf 16:109–115. https://doi.org/10.1007/s00003-021-01322-4 DOI
Pérez H, Vargas G, Silva R (2022) Use of nanotechnology to mitigate biofouling in stainless steel devices used in food processing, healthcare, and marine environments. Toxics 10. https://doi.org/10.3390/toxics10010035 PubMed DOI PMC
Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713. https://doi.org/10.1016/j.biomaterials.2009.09.081 PubMed DOI
Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016. https://doi.org/10.1155/2016/1851242 PubMed DOI PMC
Raymond P, Houard E, Denis M, Esnault E (2019) Diversity of Yersinia enterocolitica isolated from pigs in a French slaughterhouse over 2 years. Microbiologyopen 8. https://doi.org/10.1002/mbo3.751 PubMed DOI
Sami R, Almatrafi M, Elhakem A, Alharbi M, Benajiba N, Helal M (2021) Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes (Basel) 11. https://doi.org/10.3390/membranes11020140 PubMed DOI PMC
Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154. https://doi.org/10.1128/jb.184.4.1140-1154.2002 PubMed DOI PMC
Schmidt H, Thom M, King L, Wieprecht S, Gerbersdorf SU (2016) The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshw Biol 61:963–978. https://doi.org/10.1111/fwb.12760 DOI
Schoder D, Guldimann C, Märtlbauer E (2022) Asymptomatic carriage of Listeria monocytogenes by animals and humans and its impact on the food chain. Foods 11:3472. https://doi.org/10.3390/foods11213472 PubMed DOI PMC
Schumann-Muck F, Blaeske V, Braun P, Koethe M (2023) Effectiveness of nanoscale silicon dioxide-coated picker fingers on Salmonella Enteritidis and Escherichia coli. Eur Food Res Technol 250:203–211. https://doi.org/10.1007/s00217-023-04378-8 DOI
Sekhon BS (2010) Food nanotechnology – an overview. Nanotechnol Sci Appl 3:1–15. https://doi.org/10.2147/nsa.s12187498 PubMed DOI PMC
Shintani H (2004) Modification of medical device surface to attain anti-infection. Trends Biomater Artif Organs 18(1):1–8
Strommenger B, Kettlitz C, Werner G, Witte W (2003) Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol 41:4089–4094. https://doi.org/10.1128/jcm.41.9.4089-4094.2003 PubMed DOI PMC
Su Q, Zhao X, Zhang X, Wang Y, Zeng Z, Cui H, Wang C (2022) Nano functional food: opportunities, development, and future perspectives. Int J Mol Sci 24:234. https://doi.org/10.3390/ijms24010234 PubMed DOI PMC
Swanenburg M, van der Wolf PJ, Urlings HAP, Snijders JMA, van Knapen F (2001) Salmonella in slaughter pigs: the effect of logistic slaughter procedures of pigs on the prevalence of Salmonella in pork. Int J Food Microbiol 70:231–242. https://doi.org/10.1016/S0168-1605(01)00546-3 PubMed DOI
TrinkwV (2023) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung – TrinkwV) vom 20. Juni 2023 (BGBl. 2023 I Nr. 159, S. 2). https://www.gesetze-im-internet.de/trinkwv_2023/ . last considered Version 24.09.2021
Türetgen I (2015) Reduction of microbial biofilm formation using hydrophobic nano-silica coating on cooling tower fill material. Water SA 41:295–299. https://doi.org/10.4314/wsa.v41i3.01 DOI
Turetgen I (2020) Reduction of biofilm formation on cooling tower heat exchangers using nano-silica coating. Johnson Matthey Technology Review 64:419–424. https://doi.org/10.1595/205651320X15895565390677 DOI
Wingender J, Flemming H-C (2011) Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 214:417–423. https://doi.org/10.1016/j.ijheh.2011.05.009 PubMed DOI
Winkler HC, Suter M, Naegeli H (2016) Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnol 14:44. https://doi.org/10.1186/s12951-016-0189-6 DOI