Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes

. 2024 Feb ; 69 (1) : 173-180. [epub] 20230909

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37688746
Odkazy

PubMed 37688746
PubMed Central PMC10876764
DOI 10.1007/s12223-023-01089-1
PII: 10.1007/s12223-023-01089-1
Knihovny.cz E-zdroje

High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.

Zobrazit více v PubMed

Anon (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs, vol 48

Albert T, Braun PG, Saffaf J, et al. Physical methods for the decontamination of meat surfaces. Curr Clin Micro Rpt. 2021;8:9–20. doi: 10.1007/s40588-021-00156-w. DOI

Bayoudh S, Othmane A, Bettaieb F, et al. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–305. doi: 10.1016/j.msec.2005.10.045. DOI

Brierley GL, Parreira VR, Farber JM, et al. Growth of Listeria monocytogenes inoculated on packaged fresh-cut turnips stored at 4 and 10 °C. J Food Prot. 2020;83:1296–1301. doi: 10.4315/JFP-19-609. PubMed DOI

Campoccia D, Montanaro L, Agheli H, et al. Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Int J Artif Organs. 2006;29:622–629. doi: 10.1177/039139880602900612. PubMed DOI

Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2006;2:22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x. PubMed DOI

Cordero N, Maza F, Navea-Perez H, et al. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front Microbiol. 2016;7:229. doi: 10.3389/fmicb.2016.00229. PubMed DOI PMC

Díaz C, Schilardi PL, Salvarezza RC, et al. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir. 2007;23:11206–11210. doi: 10.1021/la700650q. PubMed DOI

European Food Safety Authority (EFSA) (2022a) Listeria. https://www.efsa.europa.eu/en/​topics/topic/listeria. Accessed 20 Feb 2023

European Food Safety Authority (EFSA) (2022b) The European Union One Health 2021 Zoonoses report 20:1–273. 10.2903/j.efsa.2022.7666 PubMed PMC

Feng G, Cheng Y, Wang S-Y, et al. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling. 2014;30:1253–1268. doi: 10.1080/08927014.2014.976561. PubMed DOI

Feng G, Cheng Y, Wang S-Y, et al. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes. 2015;1:15022. doi: 10.1038/npjbiofilms.2015.22. PubMed DOI PMC

Friedlander RS, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci USA. 2013;110:5624–5629. doi: 10.1073/pnas.1219662110. PubMed DOI PMC

Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI

German Federal Institute for Risk Assessment (BfR) (2019) Bacteriophages FAQs. https://www.bfr.bund.de/cm/349/bacteriophages-faqs.pdf. Accessed 22 Feb 2023

Gray ML, Killinger AH. Listeria monocytogenes and listeric infections. Bacteriol Rev. 1966;30:309–382. doi: 10.1128/br.30.2.309-382.1966. PubMed DOI PMC

Hood SK, Zottola EA. Biofilms in food processing. Food Control. 1995;6:9–18. doi: 10.1016/0956-7135(95)91449-U. DOI

Hsu LC, Fang J, Borca-Tasciuc DA, et al. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol. 2013;79:2703–2712. doi: 10.1128/AEM.03436-12. PubMed DOI PMC

Ivanova EP, Truong VK, Wang JY, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26:1973–1982. doi: 10.1021/la902623c. PubMed DOI

Lee HJ, Jung H, Choe W, et al. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 2011;28:1468–1471. doi: 10.1016/j.fm.2011.08.002. PubMed DOI

Marshall DL, Schmidt RH. Growth of Listeria monocytogenes at 10 °C in milk preincubated with selected pseudomonads. J Food Prot. 1988;51:277–282. doi: 10.4315/0362-028X-51.4.277. PubMed DOI

McClure PJ, Kelly TM, Roberts TA (1991) The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. Int J Food Microbiol 77–92 PubMed

Mitik-Dineva N, Wang J, Mocanasu RC, et al. Impact of nano-topography on bacterial attachment. Biotechnol J. 2008;3:536–544. doi: 10.1002/biot.200700244. PubMed DOI

Mittelman MW. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Food Sci. 1998;81:2760–2764. PubMed

Nielsen SS, Alvarez J, Bicout DJ, et al. Slaughter of animals: poultry. EFSA J. 2019;17:e05849. doi: 10.2903/j.efsa.2019.5849. PubMed DOI PMC

Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2007;34:577–588. doi: 10.1007/s10295-007-0234-4. PubMed DOI

Pan Y, Breidt F. Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol. 2007;73:8028–8031. doi: 10.1128/AEM.01198-07. PubMed DOI PMC

Petran RL, Zottola EA. A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J Food Sci. 2006;54:458–460. doi: 10.1111/j.1365-2621.1989.tb03105.x. DOI

Puckett SD, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomater Sci. 2010;31:706–713. doi: 10.1016/j.biomaterials.2009.09.081. PubMed DOI

Schumann-Muck FM, Hillig N, Braun PG, et al. Impact of nanoscale coating of stainless steel on Salmonella Enteritidis and Escherichia coli. J Food Safety. 2023 doi: 10.1111/jfs.13075. DOI

Shahamat M, Seaman A, Woodbine M. Survival of Listeria monocytogenes in high salt concentrations: Salzfestigkeit der Listeria monocytogenes. Zentralbl Bacteriol [A] 1980;246:506–511. PubMed

Sinde E, Carballo J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000;17:439–447. doi: 10.1006/fmic.2000.0339. DOI

Singh AV, Vyas V, Patil R, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE. 2011;6:e25029. doi: 10.1371/journal.pone.0025029. PubMed DOI PMC

Smoot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J Food Prot. 1998;61:1293–1298. doi: 10.4315/0362-028x-61.10.1293. PubMed DOI

Truong VK, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol. 2009;83:925–937. doi: 10.1007/s00253-009-1944-5. PubMed DOI

Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74:69–117. doi: 10.1016/S0001-8686(97)00040-7. PubMed DOI

Whitehead KA, Colligon J, Verran J. Retention of microbial cells in substratum features of micrometer and sub-micrometer dimensions. Colloids Surf B Biointerfaces. 2005;41:129–138. doi: 10.1016/j.colsurfb.2004.11.010. PubMed DOI

Wideman NE, Oliver JD, Crandall PG, et al. Detection and potential virulence of viable but non-culturable (VBNC) Listeria monocytogenes: a review. Microorganisms. 2021;9:194. doi: 10.3390/microorganisms9010194. PubMed DOI PMC

Zakarienė G, Novoslavskij A, Meškinis Š, et al. Diamond like carbon Ag nanocomposites as a control measure against Campylobacter jejuni and Listeria monocytogenes on food preparation surfaces. Diam Relat Mater. 2018;81:118–126. doi: 10.1016/j.diamond.2017.12.007. DOI

Żbikowska K, Michalczuk M, Dolka B. The use of bacteriophages in the poultry industry. Animals (Basel) 2020;10:872. doi: 10.3390/ani10050872. PubMed DOI PMC

Zeraik AE, Nitschke M. Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol. 2010;61:554–559. doi: 10.1007/s00284-010-9652-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...