Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37688746
PubMed Central
PMC10876764
DOI
10.1007/s12223-023-01089-1
PII: 10.1007/s12223-023-01089-1
Knihovny.cz E-zdroje
- Klíčová slova
- Coating, Cross-contamination, Listeria monocytogenes, Nanoscale, Stainless steel,
- MeSH
- bakteriální adheze MeSH
- biofilmy MeSH
- kontaminace potravin * analýza MeSH
- Listeria monocytogenes * MeSH
- nerezavějící ocel analýza MeSH
- počet mikrobiálních kolonií MeSH
- potravinářská mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nerezavějící ocel MeSH
High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Zobrazit více v PubMed
Anon (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs, vol 48
Albert T, Braun PG, Saffaf J, et al. Physical methods for the decontamination of meat surfaces. Curr Clin Micro Rpt. 2021;8:9–20. doi: 10.1007/s40588-021-00156-w. DOI
Bayoudh S, Othmane A, Bettaieb F, et al. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater Sci Eng C. 2006;26:300–305. doi: 10.1016/j.msec.2005.10.045. DOI
Brierley GL, Parreira VR, Farber JM, et al. Growth of Listeria monocytogenes inoculated on packaged fresh-cut turnips stored at 4 and 10 °C. J Food Prot. 2020;83:1296–1301. doi: 10.4315/JFP-19-609. PubMed DOI
Campoccia D, Montanaro L, Agheli H, et al. Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Int J Artif Organs. 2006;29:622–629. doi: 10.1177/039139880602900612. PubMed DOI
Chmielewski RAN, Frank JF. Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf. 2006;2:22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x. PubMed DOI
Cordero N, Maza F, Navea-Perez H, et al. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front Microbiol. 2016;7:229. doi: 10.3389/fmicb.2016.00229. PubMed DOI PMC
Díaz C, Schilardi PL, Salvarezza RC, et al. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir. 2007;23:11206–11210. doi: 10.1021/la700650q. PubMed DOI
European Food Safety Authority (EFSA) (2022a) Listeria. https://www.efsa.europa.eu/en/topics/topic/listeria. Accessed 20 Feb 2023
European Food Safety Authority (EFSA) (2022b) The European Union One Health 2021 Zoonoses report 20:1–273. 10.2903/j.efsa.2022.7666 PubMed PMC
Feng G, Cheng Y, Wang S-Y, et al. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling. 2014;30:1253–1268. doi: 10.1080/08927014.2014.976561. PubMed DOI
Feng G, Cheng Y, Wang S-Y, et al. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes. 2015;1:15022. doi: 10.1038/npjbiofilms.2015.22. PubMed DOI PMC
Friedlander RS, Vlamakis H, Kim P, et al. Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci USA. 2013;110:5624–5629. doi: 10.1073/pnas.1219662110. PubMed DOI PMC
Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008;18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001. DOI
German Federal Institute for Risk Assessment (BfR) (2019) Bacteriophages FAQs. https://www.bfr.bund.de/cm/349/bacteriophages-faqs.pdf. Accessed 22 Feb 2023
Gray ML, Killinger AH. Listeria monocytogenes and listeric infections. Bacteriol Rev. 1966;30:309–382. doi: 10.1128/br.30.2.309-382.1966. PubMed DOI PMC
Hood SK, Zottola EA. Biofilms in food processing. Food Control. 1995;6:9–18. doi: 10.1016/0956-7135(95)91449-U. DOI
Hsu LC, Fang J, Borca-Tasciuc DA, et al. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol. 2013;79:2703–2712. doi: 10.1128/AEM.03436-12. PubMed DOI PMC
Ivanova EP, Truong VK, Wang JY, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26:1973–1982. doi: 10.1021/la902623c. PubMed DOI
Lee HJ, Jung H, Choe W, et al. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food Microbiol. 2011;28:1468–1471. doi: 10.1016/j.fm.2011.08.002. PubMed DOI
Marshall DL, Schmidt RH. Growth of Listeria monocytogenes at 10 °C in milk preincubated with selected pseudomonads. J Food Prot. 1988;51:277–282. doi: 10.4315/0362-028X-51.4.277. PubMed DOI
McClure PJ, Kelly TM, Roberts TA (1991) The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. Int J Food Microbiol 77–92 PubMed
Mitik-Dineva N, Wang J, Mocanasu RC, et al. Impact of nano-topography on bacterial attachment. Biotechnol J. 2008;3:536–544. doi: 10.1002/biot.200700244. PubMed DOI
Mittelman MW. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Food Sci. 1998;81:2760–2764. PubMed
Nielsen SS, Alvarez J, Bicout DJ, et al. Slaughter of animals: poultry. EFSA J. 2019;17:e05849. doi: 10.2903/j.efsa.2019.5849. PubMed DOI PMC
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol. 2007;34:577–588. doi: 10.1007/s10295-007-0234-4. PubMed DOI
Pan Y, Breidt F. Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol. 2007;73:8028–8031. doi: 10.1128/AEM.01198-07. PubMed DOI PMC
Petran RL, Zottola EA. A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. J Food Sci. 2006;54:458–460. doi: 10.1111/j.1365-2621.1989.tb03105.x. DOI
Puckett SD, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomater Sci. 2010;31:706–713. doi: 10.1016/j.biomaterials.2009.09.081. PubMed DOI
Schumann-Muck FM, Hillig N, Braun PG, et al. Impact of nanoscale coating of stainless steel on Salmonella Enteritidis and Escherichia coli. J Food Safety. 2023 doi: 10.1111/jfs.13075. DOI
Shahamat M, Seaman A, Woodbine M. Survival of Listeria monocytogenes in high salt concentrations: Salzfestigkeit der Listeria monocytogenes. Zentralbl Bacteriol [A] 1980;246:506–511. PubMed
Sinde E, Carballo J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000;17:439–447. doi: 10.1006/fmic.2000.0339. DOI
Singh AV, Vyas V, Patil R, et al. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE. 2011;6:e25029. doi: 10.1371/journal.pone.0025029. PubMed DOI PMC
Smoot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J Food Prot. 1998;61:1293–1298. doi: 10.4315/0362-028x-61.10.1293. PubMed DOI
Truong VK, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Appl Microbiol Biotechnol. 2009;83:925–937. doi: 10.1007/s00253-009-1944-5. PubMed DOI
Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74:69–117. doi: 10.1016/S0001-8686(97)00040-7. PubMed DOI
Whitehead KA, Colligon J, Verran J. Retention of microbial cells in substratum features of micrometer and sub-micrometer dimensions. Colloids Surf B Biointerfaces. 2005;41:129–138. doi: 10.1016/j.colsurfb.2004.11.010. PubMed DOI
Wideman NE, Oliver JD, Crandall PG, et al. Detection and potential virulence of viable but non-culturable (VBNC) Listeria monocytogenes: a review. Microorganisms. 2021;9:194. doi: 10.3390/microorganisms9010194. PubMed DOI PMC
Zakarienė G, Novoslavskij A, Meškinis Š, et al. Diamond like carbon Ag nanocomposites as a control measure against Campylobacter jejuni and Listeria monocytogenes on food preparation surfaces. Diam Relat Mater. 2018;81:118–126. doi: 10.1016/j.diamond.2017.12.007. DOI
Żbikowska K, Michalczuk M, Dolka B. The use of bacteriophages in the poultry industry. Animals (Basel) 2020;10:872. doi: 10.3390/ani10050872. PubMed DOI PMC
Zeraik AE, Nitschke M. Biosurfactants as agents to reduce adhesion of pathogenic bacteria to polystyrene surfaces: effect of temperature and hydrophobicity. Curr Microbiol. 2010;61:554–559. doi: 10.1007/s00284-010-9652-z. PubMed DOI