Influence of a nanoscale coating on plucking fingers and stainless steel on attachment and detachment of Salmonella Enteritidis, Escherichia coli and Campylobacter jejuni
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
281C104D18
Bundesanstalt für Landwirtschaft und Ernährung
PubMed
38592347
PubMed Central
PMC11485185
DOI
10.1007/s12223-024-01162-3
PII: 10.1007/s12223-024-01162-3
Knihovny.cz E-resources
- Keywords
- Cross-contamination, Food contact surfaces, Nanomaterials, Poultry, Slaughtering,
- MeSH
- Bacterial Adhesion * MeSH
- Campylobacter jejuni * drug effects physiology MeSH
- Poultry microbiology MeSH
- Escherichia coli * growth & development physiology MeSH
- Abattoirs * MeSH
- Food Contamination prevention & control analysis MeSH
- Meat microbiology MeSH
- Stainless Steel * MeSH
- Silicon Dioxide chemistry MeSH
- Food Microbiology MeSH
- Salmonella enteritidis * drug effects physiology growth & development MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Stainless Steel * MeSH
- Silicon Dioxide MeSH
Gastroenteritis caused by Campylobacter represents the most common reported foodborne bacterial illness worldwide, followed by salmonellosis. Both diseases are often caused by the consumption of contaminated, insufficiently heated poultry meat. This can result from contamination of the meat during the slaughtering processes. Food contact surfaces like stainless steel or plucking fingers contribute significantly to cross-contamination of poultry carcasses. Modification of these surfaces could lead to a reduction of the bacterial burden, as already proven by successful application in various food industry sectors, such as packaging.In this study, nanoscale silica-coated and uncoated stainless-steel surfaces and plucking fingers were compared on a pilot scale regarding attachment and detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli.The bacteria did not adhere less to the coated plucking fingers or stainless-steel sections than to the uncoated ones. The coating also did not lead to a significant difference in detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli from the investigated surfaces compared to the uncoated ones.Our study did not reveal any differences between the coated and uncoated surfaces with regard to the investigated bacteria. In order to achieve a better adaptation of the coating to slaughterhouse conditions, future studies should focus on its further development based on the investigation of specific coating parameters.
See more in PubMed
Allen VM, Tinker DB, Hinton MH, Wathes CM (2003) Dispersal of micro-organisms in commercial defeathering systems. Br Poult Sci 44:53–59. 10.1080/0007166031000085436 PubMed
Arnold JW, Silvers S (2000) Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation. Poult Sci 79:1215–1221. 10.1093/ps/79.8.1215 PubMed
Bakker DP, Busscher HJ, van Zanten J, de Vries J, Klijnstra JW, van der Mei HC (2004) Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. Microbiology 150:1779–1784. 10.1099/mic.0.26983-0 PubMed
Blaeske V, Schumann-Muck FM, Hamedy A, Braun PG, Koethe M (2023) Campylobacter colonisation of slaughterhouse surfaces may be affected by ultra-thin silica coating. AIMSAGRI 9:52–68. 10.3934/agrfood.2024004
Centers for Disease Control and Prevention (2023) Information for Health Professionals | Campylobacter | CDC
Chia TWR, Goulter RM, McMeekin T, Dykes GA, Fegan N (2009) Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol 26:853–859. 10.1016/j.fm.2009.05.012 PubMed
Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54. 10.1016/j.actbio.2018.10.036 PubMed
Di Cerbo A, Mescola A, Rosace G, Stocchi R, Rossi G, Alessandrini A, Preziuso S, Scarano A, Rea S, Loschi AR, Sabia C (2021) Antibacterial effect of stainless steel surfaces treated with a nanotechnological coating approved for food contact. Microorganisms. 10.3390/microorganisms9020248 PubMed PMC
Díaz C, Schilardi PL, Salvarezza RC, Lorenzo F, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23:11206–11210. 10.1021/la700650q PubMed
El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F, Schwab F (2021) Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat Nanotechnol 16:344–353. 10.1038/s41565-020-00812-0 PubMed PMC
European Food Safety Authority 2021, European Centre for Disease Prevention and Control (2022) The European Union One Health. Zoonoses Report 20:1–273. 10.2903/j.efsa.2022.7666 PubMed PMC
Flint SH, Brooks JD, Bremer PJ (2000) Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant streptococci. J Food Eng 43:235–242. 10.1016/S0260-8774(99)00157-0
Foley SL, Lynne AM, Nayak R (2008) Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86:E149–E162. 10.2527/jas.2007-0464 PubMed
Gallocchio F, Cibin V, Biancotto G, Roccato A, Muzzolon O, Carmen L, Simone B, Manodori L, Fabrizi A, Patuzzi I, Ricci A (2016) Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. FOOD ADDIT CONTAM A 33:1063–1071. 10.1080/19440049.2016.1179794 PubMed
Glantz SA (2012) Overall test for coincidence of two regression lines. In: Primer of biostatistics, 7th edn. McGraw-Hill, New York, p 161
Gruntar I, Biasizzo M, Kušar D, Pate M, Ocepek M (2015) Campylobacter jejuni contamination of broiler carcasses: population dynamics and genetic profiles at slaughterhouse level. Food Microbiol 50:97–101. 10.1016/j.fm.2015.03.007 PubMed
Hillig N, Schumann-Muck F, Hamedy A, Braun PG, Koethe M (2024) Impact of nanoscale silicon dioxide coating of stainless-steel surfaces on Listeria monocytogenes. Folia Microbiol 69:173–180. 10.1007/s12223-023-01089-1 PubMed PMC
Ivanova EP, Hasan JK, Webb H, Truong VK, S. Watson GA, Watson J, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8:2489–2494. 10.1002/smLl.201200528 PubMed
Pacholewicz E, Swart A, Schipper M, Gortemaker BGM, Wagenaar JA, Havelaar AH, Lipman LJA (2015) A comparison of fluctuations of Campylobacter and Escherichia coli concentrations on broiler chicken carcasses during processing in two slaughterhouses. Int J Food Microbiol 205:119–127. 10.1016/j.ijfoodmicro.2015.04.006 PubMed
Park SF (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int J Food Microbiol 74:177–188. 10.1016/S0168-1605(01)00678-X PubMed
Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomater Sci 31:706–713. 10.1016/j.biomaterials.2009.09.081 PubMed
Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131. 10.1016/j.jcis.2005.02.019 PubMed
Rasschaert G, Houf K, de Zutter L (2007) Impact of the slaughter line contamination on the presence of Salmonella on broiler carcasses. J Appl Microbiol 103:333–341. 10.1111/j.1365-2672.2006.03248.x PubMed
Robert Koch-Institut (RKI) (2020) Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2019, S. 1–255. 10.25646/6948
Statista (2022) Anzahl der jährlich registrierten Salmonellose-Erkrankungen in Deutschland in den Jahren 2001 bis 2019. Accessed 10 January 2022. https://de.statista.com/statistik/daten/studie/2673/umfrage/salmonellen-anzahl-von-erkrankungen-seit-2001/
Schlisselberg DB, Yaron S (2013) The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine. Food Microbiol 35:65–72. 10.1016/j.fm.2013.02.005 PubMed
Schmidt R, Erickson D, Sims S, Wolff P (2012) Characteristics of food contact surface materials: stainless steel. Food Prot Trends 32:574–584
Schumann-Muck FM, Blaeske V, Braun PG, Koethe M (2023a) Effectiveness of nanoscale silicon dioxide-coated picker fingers on Salmonella Enteritidis and Escherichia coli. Eur Food Res Technol. 10.1007/s00217-023-04378-8
Schumann-Muck FM, Hillig N, Braun PG, Griebel J, Koethe M (2023b) Impact of nanoscale coating of stainless steel on Salmonella Enteritidis and Escherichia coli. J Food Safety. 10.1111/jfs.13075
Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, Podestà A, Lenardi C, Gade WN, Milani P (2011) Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS ONE 6:e25029. 10.1371/journal.pone.0025029 PubMed PMC
Veluz GA, Pitchiah S, Alvarado CZ (2012) Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts. Poult Sci 91:2004–2010. 10.3382/ps.2011-01689 PubMed
World Health Organization (2015) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference grou. World Health Organization, Geneva, pp 2007–2015
World Health Organization (2020) Salmonella (non-typhoidal). Accessed 1 July 2020. https://www.who.int/news-room/fact-sheets/detail/salmonella-(non-typhoidal)
World Health Organization (2021) Estimating the burden of foodborne diseases. Accessed 6 January 2021. https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases
Zakarienė G, Novoslavskij A, Meškinis Š, Vasiliauskas A, Tamulevičienė A, Tamulevičius S, Alter T, Malakauskas M (2018) Diamond like carbon Ag nanocomposites as a control measure against Campylobacter jejuni and Listeria monocytogenes on food preparation surfaces. Diam Relat Mater 81:118–126. 10.1016/j.diamond.2017.12.007
Zeng H, de Reu K, Gabriël S, Mattheus W, de Zutter L, Rasschaert G (2021) Salmonella prevalence and persistence in industrialized poultry slaughterhouses. Poult Sci 100:100991. 10.1016/j.psj.2021.01.014 PubMed PMC