Minimally invasive myo-osseous chimeric DCIA-flap without crest, spine and skin to reconstruct composite defects of the mandible using virtual surgical planning and CAD/CAM technology
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39939868
PubMed Central
PMC11823127
DOI
10.1186/s40001-024-02233-4
PII: 10.1186/s40001-024-02233-4
Knihovny.cz E-zdroje
- MeSH
- arteria iliaca * chirurgie MeSH
- chirurgické laloky * MeSH
- design s pomocí počítače * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mandibula * chirurgie MeSH
- miniinvazivní chirurgické výkony * metody MeSH
- senioři MeSH
- zákroky plastické chirurgie * metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The medial approach for minimally invasive harvesting of a deep circumflex iliac artery (DCIA) flap is described for reconstruction of the jaw. The associated preservation of the crest of the ilium prevents the raising of the abdominal internal oblique muscle (IO) in a standard fashion. However, reconstructive surgery of composite mandibular defects includes bone and soft tissue. To achieve this goal, we combined this technique with a new perforator-based raising of the IO for reconstruction of intraoral soft tissue. METHODS: In this study, we present eight cases of patients with composite mandibular defects who underwent the myo-osseous DCIA flap procedure with an IO perforator. Virtual surgical planning was employed to preplan the size and configuration of the graft. Cutting guides were made using CAD/CAM technology. The surgical procedure followed the described medial approach for minimally invasive harvesting, leaving the iliac crest, spine, and skin intact. In addition, we completely cut and isolated the IO with its sole attachment being the ascending branch of the DCIA. We used either a surgical guide with a slot to lead through both the transverse branch of the bone and the ascending branch of the IO or a surgical guide consisting of 2 parts. RESULTS: In all instances, the flap successfully survived with a 100% success rate. There were no signs of infection, wound opening, or bleeding in either patient. Furthermore, the patients did not exhibit permanent complications related to the donor site. The internal oblique perforator flap exhibited remarkable integration in all patients and underwent rapid transformation. Notably, the flap developed keratinized mucosa (KM) that closely resembled the attached gingiva. CONCLUSION: Our study demonstrated the effectiveness of a medial approach for harvesting a newly designed more flexible chimeric myo-osseous deep circumflex iliac artery flap. By incorporating virtual surgical planning and custom-made cutting guides for obtaining deep circumflex iliac artery flaps through the medial route along with an internal oblique perforator flap, we have established a highly promising method for the rehabilitation of patients with composite mandibular defects. This approach not only improves functional outcomes, but also enhances aesthetic results to maintain patients' quality of life.
Zobrazit více v PubMed
Ayoub N, Ghassemi A, Rana M, Gerressen M, Riediger D, Hölzle F, et al. Evaluation of computer-assisted mandibular reconstruction with vascularized iliac crest bone graft compared to conventional surgery: a randomized prospective clinical trial. Trials. 2014;15:114. PubMed PMC
Cordeiro PG, Disa JJ, Hidalgo DA, Hu QY. Reconstruction of the mandible with osseous free flaps: a 10-year experience with 150 consecutive patients. Plast Reconstr Surg. 1999;104(5):1314–20. PubMed
Disa JJ, Cordeiro PG. Mandible reconstruction with microvascular surgery. Semin Surg Oncol. 2000;19(3):226–34. PubMed
Riediger D. Restoration of masticatory function by microsurgically revascularized iliac crest bone grafts using enosseous implants. Plast Reconstr Surg. 1988;81(6):861–77. PubMed
Modabber A, Ayoub N, Bock A, Möhlhenrich SC, Lethaus B, Ghassemi A, et al. Medial approach for minimally invasive harvesting of a deep circumflex iliac artery flap for reconstruction of the jaw using virtual surgical planning and CAD/CAM technology. Br J Oral Maxillofac Surg. 2017;55(9):946–51. PubMed
Foley BD, Thayer WP, Honeybrook A, McKenna S, Press S. Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg. 2013;71(2):e111–9. PubMed
Kaim AH, Kirsch EC, Alder P, Bucher P, Hammer B. Preoperative accuracy of selective laser sintering (SLS) in craniofacial 3D modeling: comparison with patient CT data. Rofo. 2009;181(7):644–51. PubMed
Valentini V, Gennaro P, Aboh IV, Longo G, Mitro V, Ialongo C. Iliac crest flap: donor site morbidity. J Craniofac Surg. 2009;20(4):1052–5. PubMed
Urken ML, Vickery C, Weinberg H, Buchbinder D, Biller HF. The internal oblique-iliac crest osseomyocutaneous microvascular free flap in head and neck reconstruction. J Reconstr Microsurg. 1989;5(3):203–14 (discussion 15-6). PubMed
Urken ML, Vickery C, Weinberg H, Buchbinder D, Lawson W, Biller HF. The internal oblique-iliac crest osseomyocutaneous free flap in oromandibular reconstruction. Report of 20 cases. Arch Otolaryngol Head Neck Surg. 1989;115(3):339–49. PubMed
Klaus-Dietrich Wolff FH. Raising of microvascular flaps. 2nd ed. Berlin: Springer; 2011. p. 243.
Zheng HP, Zhuang YH, Zhang ZM, Zhang FH, Kang QL. Modified deep iliac circumflex osteocutaneous flap for extremity reconstruction: anatomical study and clinical application. J Plast Reconstr Aesthet Surg. 2013;66(9):1256–62. PubMed
Urken ML, Weinberg H, Vickery C, Buchbinder D, Lawson W, Biller HF. Oromandibular reconstruction using microvascular composite free flaps. Report of 71 cases and a new classification scheme for bony, soft-tissue, and neurologic defects. Arch Otolaryngol Head Neck Surg. 1991;117(7):733–44. PubMed
Jewer DD, Boyd JB, Manktelow RT, Zuker RM, Rosen IB, Gullane PJ, et al. Orofacial and mandibular reconstruction with the iliac crest free flap: a review of 60 cases and a new method of classification. Plast Reconstr Surg. 1989;84(3):391–403 (discussion 4-5). PubMed
Modabber A, Möhlhenrich SC, Ayoub N, Hajji M, Raith S, Reich S, et al. Computer-aided mandibular reconstruction with vascularized iliac crest bone flap and simultaneous implant surgery. J Oral Implantol. 2015;41(5):e189–94. PubMed
Ince B, Ismayilzade M, Dadaci M, Zuhal E. Computer-assisted versus conventional freehand mandibular reconstruction with fibula free flap: a systematic review and meta-analysis. Plast Reconstr Surg. 2020;146:686e–7e. PubMed
Hall MB, Smith RG. The medial approach for obtaining iliac bone. J Oral Surg. 1981;39(6):462–5. PubMed
Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions. Periodontol 2000. 2017;73(1):7–21. PubMed
Duong HY, Roccuzzo A, Stähli A, Salvi GE, Lang NP, Sculean A. Oral health-related quality of life of patients rehabilitated with fixed and removable implant-supported dental prostheses. Periodontol 2000. 2022;88(1):201–37. PubMed PMC
Roccuzzo A, Imber JC, Marruganti C, Salvi GE, Ramieri G, Roccuzzo M. Clinical outcomes of dental implants in patients with and without history of periodontitis: a 20-year prospective study. J Clin Periodontol. 2022;49(12):1346–56. PubMed PMC
Joshi VK. Dental treatment planning and management for the mouth cancer patient. Oral Oncol. 2010;46(6):475–9. PubMed
Cheng MH, Saint-Cyr M, Ali RS, Chang KP, Hao SP, Wei FC. Osteomyocutaneous peroneal artery-based combined flap for reconstruction of composite and en bloc mandibular defects. Head Neck. 2009;31(3):361–70. PubMed
Silva AK, Humphries LS, Maldonado AA, Gottlieb LJ. Chimeric vs composite flaps for mandible reconstruction. Head Neck. 2019;41(6):1597–604. PubMed
Kumar BP, Venkatesh V, Kumar KA, Yadav BY, Mohan SR. Mandibular reconstruction: overview. J Maxillofac Oral Surg. 2016;15(4):425–41. PubMed PMC
Shin KJ, Lee SH, Koh KS, Song WC. Anatomical consideration for the safe elevation of the deep circumflex iliac artery in flap surgery. Plast Reconstr Surg. 2018;142(1):193–201. PubMed
Chim H, Salgado CJ, Mardini S, Chen HC. Reconstruction of mandibular defects. Semin Plast Surg. 2010;24(2):188–97. PubMed PMC
Weitz J, Kreutzer K, Bauer FJ, Wolff KD, Nobis CP, Kesting MR. Sandwich flaps as a feasible solution for the management of huge mandibular composite tissue defects. J Craniomaxillofac Surg. 2015;43(9):1769–75. PubMed
Lee SY, Yang KC, Lin CT, Ho YY, Chen LW, Liu WC. Long-term patient-reported donor-site morbidity after free peroneal fasciocutaneous flap in head and neck reconstruction. J Int Med Res. 2023;51(7):3000605231180841. PubMed PMC
Punjabi A, Araya S, Amadio G, Webster T, Mutyala S, Wu M, et al. Chimeric versus multiple flaps for composite oral cavity defects: a systematic review and meta-analysis. Laryngoscope. 2024;134(10):4196–202. PubMed
Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants. 1990;5(4):347–59. PubMed
Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res. 1996;7(4):329–36. PubMed
Levine JP, Bae JS, Soares M, Brecht LE, Saadeh PB, Ceradini DJ, et al. Jaw in a day: total maxillofacial reconstruction using digital technology. Plast Reconstr Surg. 2013;131(6):1386–91. PubMed
Allen RJ Jr, Nelson JA, Polanco TO, Shamsunder MG, Ganly I, Boyle J, et al. Short-term outcomes following virtual surgery-assisted immediate dental implant placement in free fibula flaps for oncologic mandibular reconstruction. Plast Reconstr Surg. 2020;146(6):768e-e776. PubMed PMC
Picard-Ami LA Jr, Thomson JG, Kerrigan CL. Critical ischemia times and survival patterns of experimental pig flaps. Plast Reconstr Surg. 1990;86(4):739–43 (discussion 44-5). PubMed
Pranskunas M, Poskevicius L, Juodzbalys G, Kubilius R, Jimbo R. Influence of peri-implant soft tissue condition and plaque accumulation on peri-implantitis: a systematic review. J Oral Maxillofac Res. 2016;7(3): e2. PubMed PMC
Ramanauskaite A, Schwarz F, Sader R. Influence of width of keratinized tissue on the prevalence of peri-implant diseases: a systematic review and meta-analysis. Clin Oral Implants Res. 2022;33(Suppl 23):8–31. PubMed
Lin GH, Chan HL, Wang HL. The significance of keratinized mucosa on implant health: a systematic review. J Periodontol. 2013;84(12):1755–67. PubMed
Warrer K, Buser D, Lang NP, Karring T. Plaque-induced peri-implantitis in the presence or absence of keratinized mucosa. An experimental study in monkeys. Clin Oral Implants Res. 1995;6(3):131–8. PubMed
Chung DM, Oh TJ, Shotwell JL, Misch CE, Wang HL. Significance of keratinized mucosa in maintenance of dental implants with different surfaces. J Periodontol. 2006;77(8):1410–20. PubMed
Levine RA, Huynh-Ba G, Cochran DL. Soft tissue augmentation procedures for mucogingival defects in esthetic sites. Int J Oral Maxillofac Implants. 2014;29(Suppl):155–85. PubMed
Lang NP, Löe H. The relationship between the width of keratinized gingiva and gingival health. J Periodontol. 1972;43(10):623–7. PubMed
Gobbato L, Avila-Ortiz G, Sohrabi K, Wang CW, Karimbux N. The effect of keratinized mucosa width on peri-implant health: a systematic review. Int J Oral Maxillofac Implants. 2013;28(6):1536–45. PubMed
Bouri A Jr, Bissada N, Al-Zahrani MS, Faddoul F, Nouneh I. Width of keratinized gingiva and the health status of the supporting tissues around dental implants. Int J Oral Maxillofac Implants. 2008;23(2):323–6. PubMed