Chemical Conversations

. 2025 Jan 21 ; 30 (3) : . [epub] 20250121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39942538

Among living organisms, higher animals primarily use a combination of vocal and non-verbal cues for communication. In other species, however, chemical signaling holds a central role. The chemical and biological activity of the molecules produced by the organisms themselves and the existence of receptors/targeting sites that allow recognition of such molecules leads to various forms of responses by the producer and recipient organisms and is a fundamental principle of such communication. Chemical language can be used to coordinate processes within one species or between species. Chemical signals are thus information for other organisms, potentially inducing modification of their behavior. Additionally, this conversation is influenced by the external environment in which organisms are found. This review presents examples of chemical communication among microorganisms, between microorganisms and plants, and between microorganisms and animals. The mechanisms and physiological importance of this communication are described. Chemical interactions can be both cooperative and antagonistic. Microbial chemical signals usually ensure the formation of the most advantageous population phenotype or the disadvantage of a competitive species in the environment. Between microorganisms and plants, we find symbiotic (e.g., in the root system) and parasitic relationships. Similarly, mutually beneficial relationships are established between microorganisms and animals (e.g., gastrointestinal tract), but microorganisms also invade and disrupt the immune and nervous systems of animals.

Zobrazit více v PubMed

Lyons N.A., Kolter R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 2015;24:21–28. doi: 10.1016/j.mib.2014.12.007. PubMed DOI PMC

Tong K., Bozdag G.O., Ratcliff W.C. Selective drivers of simple multicellularity. Curr. Opin. Microbiol. 2022;67:102141. doi: 10.1016/j.mib.2022.102141. PubMed DOI

Giannakara M., Koumandou V.L. Evolution of two-component quorum sensing systems. Access Microbiol. 2022;4:000303. doi: 10.1099/acmi.0.000303. PubMed DOI PMC

Miller M.B., Bassler B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI

Hense B.A., Schuster M. Core Principles of Bacterial Autoinducer Systems. Microbiol. Mol. Biol. Rev. 2015;79:153–169. doi: 10.1128/MMBR.00024-14. PubMed DOI PMC

Li L., Pan Y., Zhang S., Yang T., Li Z., Wang B., Sun H., Zhang M., Li X. Quorum sensing: Cell-to-cell communication in Saccharomyces cerevisiae. Front. Microbiol. 2023;14:1250151. doi: 10.3389/fmicb.2023.1250151. PubMed DOI PMC

Zhang Y., Ma N., Tan P., Ma X. Quorum sensing mediates gut bacterial communication and host-microbiota interaction. Crit. Rev. Food Sci. Nutr. 2024;64:3751–3763. doi: 10.1080/10408398.2022.2134981. PubMed DOI

Jagtap S.S., Bedekar A.A., Rao C.V. Quorum Sensing: Microbial Rules of Life. Volume 1374. American Chemical Society; Washington, DC, USA: 2020. Quorum Sensing in Yeast; pp. 235–250. (ACS Symposium Series).

Charlesworth J., Beloe C., Watters C., Burns B. Quorum Sensing in Archaea: Recent Advances and Emerging Directions. Springer; Berlin/Heidelberg, Germany: 2017. pp. 119–132.

Tobias N.J., Brehm J., Kresovic D., Brameyer S., Bode H.B., Heermann R. New vocabulary for bacterial communication. ChemBioChem. 2019;21:759–768. doi: 10.1002/cbic.201900580. PubMed DOI PMC

Fan Q., Wang H., Mao C., Li J., Zhang X., Grenier D., Yi L., Wang Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. J. Agric. Food Chem. 2022;70:429–445. doi: 10.1021/acs.jafc.1c04751. PubMed DOI

He Y.-W., Deng Y., Miao Y., Chatterjee S., Tran T.M., Tian J., Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol. 2023;31:36–50. doi: 10.1016/j.tim.2022.07.006. PubMed DOI

Khalid S., Keller N.P. Chemical signals driving bacterial–fungal interactions. Environ. Microbiol. 2021;23:1334–1347. doi: 10.1111/1462-2920.15410. PubMed DOI

Singh B.N. Toxic Effects of Certain Bacterial Metabolic Products on Soil Protozoa. Nature. 1942;149:168. doi: 10.1038/149168a0. DOI

Gloer J.B. Antiinsectan natural products from fungal sclerotia. Acc. Chem. Res. 1995;28:343–350. doi: 10.1021/ar00056a004. DOI

Burkepile D.E., Parker J.D., Woodson C.B., Mills H.J., Kubanek J., Sobecky P.A., Hay M.E. Chemically mediated competition between microbes and animals: Microbes as consumers in food webs. Ecology. 2006;87:2821–2831. doi: 10.1890/0012-9658(2006)87[2821:CMCBMA]2.0.CO;2. PubMed DOI

Kendrick B. Biology of toxigenic anamorphs. Pure Appl. Chem. 1986;58:211–218. doi: 10.1351/pac198658020211. DOI

Scott J.E., Li K., Filkins L.M., Zhu B., Kuchma S.L., Schwartzman J.D., O’Toole G.A. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J. Bacteriol. 2019;201:10–1128. doi: 10.1128/JB.00014-19. PubMed DOI PMC

Traxler M.F., Seyedsayamdost M.R., Clardy J., Kolter R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 2012;86:628–644. doi: 10.1111/mmi.12008. PubMed DOI PMC

Lamont I.L., Beare P.A., Ochsner U., Vasil A.I., Vasil M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc. Natl. Acad. Sci. USA. 2002;99:7072–7077. doi: 10.1073/pnas.092016999. PubMed DOI PMC

Romero D., Traxler M.F., López D., Kolter R. Antibiotics as Signal Molecules. Chem. Rev. 2011;111:5492–5505. doi: 10.1021/cr2000509. PubMed DOI PMC

De Jong M., Alto N.M. Toxins, mutations and adaptations. eLife. 2021;10:e66676. doi: 10.7554/eLife.66676. PubMed DOI PMC

Karthik C., Shu Q. Current insights on rice (Oryza sativa L.) bakanae disease and exploration of its management strategies. J. Zhejiang Univ.-Sci. B. 2023;24:755–778. doi: 10.1631/jzus.B2300085. PubMed DOI PMC

Popoff M.R., Poulain B. Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells. Toxins. 2010;2:683–737. doi: 10.3390/toxins2040683. PubMed DOI PMC

Farmen K., Tofiño-Vian M., Wellfelt K., Olson L., Iovino F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol. Dis. 2024;195:106484. doi: 10.1016/j.nbd.2024.106484. PubMed DOI

Ferreira G., Cardozo R., Sastre S., Costa C., Santander A., Chavarría L., Guizzo V., Puglisi J., Nicolson G.L. Bacterial toxins and heart function: Heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys. Rev. 2023;15:447–473. doi: 10.1007/s12551-023-01100-6. PubMed DOI PMC

Beckerson W.C., Krider C., Mohammad U.A., de Bekker C. 28 minutes later: Investigating the role of aflatrem-like compounds in Ophiocordyceps parasite manipulation of zombie ants. Anim. Behav. 2023;203:225–240. doi: 10.1016/j.anbehav.2023.06.011. DOI

Araújo J.P.M., Evans H.C., Kepler R., Hughes D.P. Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Stud. Mycol. 2018;90:119–160. doi: 10.1016/j.simyco.2017.12.002. PubMed DOI PMC

Woolley V.C., Teakle G.R., Prince G., de Moor C.H., Chandler D. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J. Invertebr. Pathol. 2020;177:107480. doi: 10.1016/j.jip.2020.107480. PubMed DOI PMC

Herbert E.E., Goodrich-Blair H. Friend and foe: The two faces of Xenorhabdus nematophila. Nat. Rev. Microbiol. 2007;5:634–646. doi: 10.1038/nrmicro1706. PubMed DOI

Zain M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011;15:129–144. doi: 10.1016/j.jscs.2010.06.006. DOI

Cendra M.d.M., Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021;49:107734. doi: 10.1016/j.biotechadv.2021.107734. PubMed DOI

Wu D., Wang W., Yao Y., Li H., Wang Q., Niu B. Microbial interactions within beneficial consortia promote soil health. Sci. Total Environ. 2023;900:165801. doi: 10.1016/j.scitotenv.2023.165801. PubMed DOI

Granada Agudelo M., Ruiz B., Capela D., Remigi P. The role of microbial interactions on rhizobial fitness. Front. Plant Sci. 2023;14:1277262. doi: 10.3389/fpls.2023.1277262. PubMed DOI PMC

Ball O.J., Prestidge R.A., Sprosen J.M. Interrelationships between Acremonium lolii, Peramine, and Lolitrem B in Perennial Ryegrass. Appl. Environ. Microbiol. 1995;61:1527–1533. doi: 10.1128/aem.61.4.1527-1533.1995. PubMed DOI PMC

Fernando K., Reddy P., Vassiliadis S., Spangenberg G.C., Rochfort S.J., Guthridge K.M. The Known Antimammalian and Insecticidal Alkaloids Are Not Responsible for the Antifungal Activity of Epichloë Endophytes. Plants. 2021;10:2486. doi: 10.3390/plants10112486. PubMed DOI PMC

Ezenwa V.O., Williams A.E. Microbes and animal olfactory communication: Where do we go from here? Bioessays. 2014;36:847–854. doi: 10.1002/bies.201400016. PubMed DOI

Theis K.R., Venkataraman A., Dycus J.A., Koonter K.D., Schmitt-Matzen E.N., Wagner A.P., Holekamp K.E., Schmidt T.M. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. USA. 2013;110:19832–19837. doi: 10.1073/pnas.1306477110. PubMed DOI PMC

Nyholm S.V., McFall-Ngai M.J. A lasting symbiosis: How the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 2021;19:666–679. doi: 10.1038/s41579-021-00567-y. PubMed DOI PMC

Osadchiy V., Martin C.R., Mayer E.A. The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019;17:322–332. doi: 10.1016/j.cgh.2018.10.002. PubMed DOI PMC

Chong T.N., Shapiro L. Bacterial cell differentiation enables population level survival strategies. mBio. 2024;15:e00758-24. doi: 10.1128/mbio.00758-24. PubMed DOI PMC

Khalid S.J., Ain Q., Khan S.J., Jalil A., Siddiqui M.F., Ahmad T., Badshah M., Adnan F. Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J. Biol. Sci. 2022;29:1673–1682. doi: 10.1016/j.sjbs.2021.10.064. PubMed DOI PMC

Thoendel M., Horswill A.R. Biosynthesis of Peptide Signals in Gram-Positive Bacteria. Elsevier; Amsterdam, The Netherlands: 2010. pp. 91–112. PubMed PMC

Sun J., Daniel R., Wagner-Döbler I., Zeng A.-P. Is autoinducer-2 a universal signal for interspecies communication: A comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 2004;4:36. doi: 10.1186/1471-2148-4-36. PubMed DOI PMC

Septer A.N., Visick K.L. Lighting the way: How the Vibrio fischeri model microbe reveals the complexity of Earth’s “simplest” life forms. J. Bacteriol. 2024;206:e00035-24. doi: 10.1128/jb.00035-24. PubMed DOI PMC

Pérez P.D., Weiss J.T., Hagen S.J. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC Syst. Biol. 2011;5:153. doi: 10.1186/1752-0509-5-153. PubMed DOI PMC

Gu Y., Tian J., Zhang Y., Wu R., Li L., Zhang B., He Y. Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum. J. Biosci. Bioeng. 2021;131:153–160. doi: 10.1016/j.jbiosc.2020.09.015. PubMed DOI

Suppiger A., Eshwar A.K., Stephan R., Kaever V., Eberl L., Lehner A. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci. Rep. 2016;6:18753. doi: 10.1038/srep18753. PubMed DOI PMC

Sengupta S., Chattopadhyay M.K., Grossart H.-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013;4:47. doi: 10.3389/fmicb.2013.00047. PubMed DOI PMC

Madhani H.D. Interplay of intrinsic and extrinsic signals in yeast differentiation. Proc. Natl. Acad. Sci. USA. 2000;97:13461–13463. doi: 10.1073/pnas.011511198. PubMed DOI PMC

Pan X., Harashima T., Heitman J. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr. Opin. Microbiol. 2000;3:567–572. doi: 10.1016/S1369-5274(00)00142-9. PubMed DOI

Calvo A.M., Wilson R.A., Bok J.W., Keller N.P. Relationship between Secondary Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 2002;66:447–459. doi: 10.1128/MMBR.66.3.447-459.2002. PubMed DOI PMC

Lee J., Son H., Lee S., Park A.R., Lee Y.-W. Development of a Conditional Gene Expression System Using a Zearalenone-Inducible Promoter for the Ascomycete Fungus Gibberella zeae. Appl. Environ. Microbiol. 2010;76:3089–3096. doi: 10.1128/AEM.02999-09. PubMed DOI PMC

Shi T.-T., Li G.-H., Zhao P.-J. Appressoria—Small but Incredibly Powerful Structures in Plant–Pathogen Interactions. Int. J. Mol. Sci. 2023;24:2141. doi: 10.3390/ijms24032141. PubMed DOI PMC

Beppu T. Secondary metabolites as chemical signals for cellular differentiation. Gene. 1992;115:159–165. doi: 10.1016/0378-1119(92)90554-3. PubMed DOI

Shiina T., Nakagawa K., Fujisaki Y., Ozaki T., Liu C., Toyomasu T., Hashimoto M., Koshino H., Minami A., Kawaide H., et al. Biosynthetic study of conidiation-inducing factor conidiogenone: Heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Biosci. Biotechnol. Biochem. 2019;83:192–201. doi: 10.1080/09168451.2018.1536518. PubMed DOI

Roncal T.S., CordobéS S., Sterner O., Ugalde U. Conidiation in Penicillium cyclopium Is Induced by Conidiogenone, an Endogenous Diterpene. Eukaryot. Cell. 2002;1:823–829. doi: 10.1128/EC.1.5.823-829.2002. PubMed DOI PMC

Kim Y.H., Park B.S., Bhatia S.K., Seo H.-M., Jeon J.-M., Kim H.-J., Yi D.-H., Lee J.-H., Choi K.-Y., Park H.-Y., et al. Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology. J. Microbiol. Biotechnol. 2014;24:1319–1326. doi: 10.4014/jmb.1403.03024. PubMed DOI

Yamamoto-Yamaguchi Y., Okabe-Kado J., Kasukabe T., Honma Y. Induction of differentiation of human myeloid leukemia cells by immunosuppressant macrolides (rapamycin and FK506) and calcium/calmodulin-dependent kinase inhibitors. Exp. Hematol. 2001;29:582–588. doi: 10.1016/S0301-472X(01)00626-9. PubMed DOI

Combarnous Y., Nguyen T.M.D. Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int. J. Mol. Sci. 2020;21:8052. doi: 10.3390/ijms21218052. PubMed DOI PMC

Xu Z., Liu Y., Zhang N., Xun W., Feng H., Miao Y., Shao J., Shen Q., Zhang R. Chemical communication in plant–microbe beneficial interactions: A toolbox for precise management of beneficial microbes. Curr. Opin. Microbiol. 2023;72:102269. doi: 10.1016/j.mib.2023.102269. PubMed DOI

Karban R. Plant Communication. Annu. Rev. Ecol. Evol. Syst. 2021;52:1–24. doi: 10.1146/annurev-ecolsys-010421-020045. DOI

Baeckens S. Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods. Belg. J. Zool. 2019;149:63–93. doi: 10.26496/bjz.2019.31. DOI

Wyatt T.D. How Animals Communicate Via Pheromones. Am. Sci. 2015;103:114–121. doi: 10.1511/2015.113.114. DOI

Loreto F., D’Auria S. How do plants sense volatiles sent by other plants? Trends Plant Sci. 2022;27:29–38. doi: 10.1016/j.tplants.2021.08.009. PubMed DOI

Liu Z., Wang M., Wu M., Li X., Liu H., Niu N., Li S., Chen L. Volatile organic compounds (VOCs) from plants: From release to detection. TrAC Trends Anal. Chem. 2023;158:116872. doi: 10.1016/j.trac.2022.116872. DOI

Macabuhay A., Arsova B., Walker R., Johnson A., Watt M., Roessner U. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends Plant Sci. 2022;27:180–190. doi: 10.1016/j.tplants.2021.08.004. PubMed DOI

Li J.-H., Fan L.-F., Zhao D.-J., Zhou Q., Yao J.-P., Wang Z.-Y., Huang L. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol. 2021;261:153418. doi: 10.1016/j.jplph.2021.153418. PubMed DOI

Landrein B., Ingram G. Connected through the force: Mechanical signals in plant development. J. Exp. Bot. 2019;70:3507–3519. doi: 10.1093/jxb/erz103. PubMed DOI

Bais H.P., Park S.-W., Weir T.L., Callaway R.M., Vivanco J.M. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004;9:26–32. doi: 10.1016/j.tplants.2003.11.008. PubMed DOI

Rizaludin M.S., Stopnisek N., Raaijmakers J.M., Garbeva P. The Chemistry of Stress: Understanding the ‘Cry for Help’ of Plant Roots. Metabolites. 2021;11:357. doi: 10.3390/metabo11060357. PubMed DOI PMC

Stassen M.J.J., Hsu S.-H., Pieterse C.M.J., Stringlis I.A. Coumarin Communication Along the Microbiome–Root–Shoot Axis. Trends Plant Sci. 2021;26:169–183. doi: 10.1016/j.tplants.2020.09.008. PubMed DOI

Douglas A.E., Dobson A.J. New Synthesis: Animal Communication Mediated by Microbes: Fact or Fantasy? J. Chem. Ecol. 2013;39:1149. doi: 10.1007/s10886-013-0343-7. PubMed DOI PMC

Schulte B.A., Freeman E.W., Goodwin T.E., Hollister-Smith J., Rasmussen L.E.L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 2007;102:344–363. doi: 10.1016/j.applanim.2006.05.035. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...