• This record comes from PubMed

Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors

. 2025 Mar 05 ; 16 (5) : 761-771. [epub] 20250213

Language English Country United States Media print-electronic

Document type Journal Article, Review

Grant support
R01 DA007418 NIDA NIH HHS - United States
R01 MH122470 NIMH NIH HHS - United States

Measuring the transduction of electrical signals within neurons is a key capability in neuroscience. Fluorescent voltage sensitive dyes (VSDs) were early tools that complemented classical electrophysiology by enabling the optical recording of membrane potential changes from many cells simultaneously. Recent advances in the VSD field have led to bright and highly sensitive sensors that can be targeted to the desired cell populations in live brain tissue. Despite this progress, recently, protein-based genetically encoded voltage indicators (GEVIs) have become the go-to tools for targeted voltage imaging in complex environments. In this Perspective, we summarize progress in developing targetable VSDs, discuss areas where these synthetic sensors are or could become relevant, and outline hurdles that need to be overcome to promote the routine use of targetable VSDs in neuroscience research.

See more in PubMed

Sakmann B.; Neher E. Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes. Annu. Rev. Physiol. 1984, 46, 455–472. 10.1146/annurev.ph.46.030184.002323. PubMed DOI

Grienberger C.; Konnerth A. Imaging calcium in neurons. Neuron 2012, 73 (5), 862–85. 10.1016/j.neuron.2012.02.011. PubMed DOI

Knöpfel T.; Song C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 2019, 20 (12), 719–727. 10.1038/s41583-019-0231-4. PubMed DOI

Braubach O.; Cohen L. B.; Choi Y.. Historical Overview and General Methods of Membrane Potential Imaging. In Advances in Experimental Medicine and Biology; Springer International Publishing: 2015; pp 3–26. PubMed

Loew L. M.Design and Use of Organic Voltage Sensitive Dyes. In Advances in Experimental Medicine and Biology; Springer International Publishing: 2015; pp 27–53. PubMed

Peterka D. S.; Takahashi H.; Yuste R. Imaging voltage in neurons. Neuron 2011, 69 (1), 9–21. 10.1016/j.neuron.2010.12.010. PubMed DOI PMC

Loew L. M. Design and characterization of electrochromic membrane probes. Journal of Biochemical and Biophysical Methods 1982, 6 (3), 243–260. 10.1016/0165-022X(82)90047-1. PubMed DOI

Yan P.; Acker C. D.; Biasci V.; Judge G.; Monroe A.; Sacconi L.; Loew L. M. Near-infrared voltage-sensitive dyes based on chromene donor. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (34), e2305093120.10.1073/pnas.2305093120. PubMed DOI PMC

Miller E. W.; Lin J. Y.; Frady E. P.; Steinbach P. A.; Kristan W. B.; Tsien R. Y. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (6), 2114–2119. 10.1073/pnas.1120694109. PubMed DOI PMC

Boggess S. C.; Gandhi S. S.; Benlian B. R.; Miller E. W. Vinyl-Fluorene Molecular Wires for Voltage Imaging with Enhanced Sensitivity and Reduced Phototoxicity. J. Am. Chem. Soc. 2021, 143 (31), 11903–11907. 10.1021/jacs.1c04543. PubMed DOI PMC

Gonzalez M. A.; Walker A. S.; Cao K. J.; Lazzari-Dean J. R.; Settineri N. S.; Kong E. J.; Kramer R. H.; Miller E. W. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. J. Am. Chem. Soc. 2021, 143 (5), 2304–2314. 10.1021/jacs.0c11382. PubMed DOI PMC

Grenier V.; Martinez K. N.; Benlian B. R.; García-Almedina D. M.; Raliski B. K.; Boggess S. C.; Maza J. C.; Yang S. J.; Gest A. M. M.; Miller E. W. Molecular Prosthetics for Long-Term Functional Imaging with Fluorescent Reporters. ACS Cent. Sci. 2022, 8 (1), 118–121. 10.1021/acscentsci.1c01153. PubMed DOI PMC

Mccann J. T.; Benlian B. R.; Yaeger-Weiss S. K.; Knudson I. J.; He M.; Miller E. W. Flipping the Switch: Reverse-Demand Voltage-Sensitive Fluorophores. J. Am. Chem. Soc. 2022, 144 (29), 13050–13054. 10.1021/jacs.2c05385. PubMed DOI PMC

Kulkarni R. U.; Vandenberghe M.; Thunemann M.; James F.; Andreassen O. A.; Djurovic S.; Devor A.; Miller E. W. In Vivo Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes. ACS Cent. Sci. 2018, 4 (10), 1371–1378. 10.1021/acscentsci.8b00422. PubMed DOI PMC

Grinvald A.; Hildesheim R. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 2004, 5 (11), 874–885. 10.1038/nrn1536. PubMed DOI

Kuhn B.; Denk W.; Bruno R. M. In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (21), 7588–7593. 10.1073/pnas.0802462105. PubMed DOI PMC

Kulkarni R. U.; Kramer D. J.; Pourmandi N.; Karbasi K.; Bateup H. S.; Miller E. W. Voltage-sensitive rhodol with enhanced two-photon brightness. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (11), 2813–2818. 10.1073/pnas.1610791114. PubMed DOI PMC

Wenner P.; Tsau Y.; Cohen L. B.; O’Donovan M. J.; Dan Y. Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics. J. Neurosci. Methods 1996, 70 (2), 111–20. 10.1016/S0165-0270(96)00108-2. PubMed DOI

Antic S.; Zecevic D. Optical signals from neurons with internally applied voltage-sensitive dyes. J. Neurosci. 1995, 15 (2), 1392–1405. 10.1523/JNEUROSCI.15-02-01392.1995. PubMed DOI PMC

Hinner M. J.; Hübener G.; Fromherz P. Enzyme-Induced Staining of Biomembranes with Voltage-Sensitive Fluorescent Dyes. J. Phys. Chem. B 2004, 108 (7), 2445–2453. 10.1021/jp036811h. PubMed DOI

Hinner M. J.; Hübener G.; Fromherz P. Genetic Targeting of Individual Cells with a Voltage-Sensitive Dye through Enzymatic Activation of Membrane Binding. ChemBioChem. 2006, 7 (3), 495–505. 10.1002/cbic.200500395. PubMed DOI

Ng D. N.; Fromherz P. Genetic Targeting of a Voltage-Sensitive Dye by Enzymatic Activation of Phosphonooxymethyl-ammonium Derivative. ACS Chem. Biol. 2011, 6 (5), 444–451. 10.1021/cb100312d. PubMed DOI

Liu P.; Grenier V.; Hong W.; Muller V. R.; Miller E. W. Fluorogenic Targeting of Voltage-Sensitive Dyes to Neurons. J. Am. Chem. Soc. 2017, 139 (48), 17334–17340. 10.1021/jacs.7b07047. PubMed DOI PMC

Ortiz G.; Liu P.; Naing S. H. H.; Muller V. R.; Miller E. W. Synthesis of Sulfonated Carbofluoresceins for Voltage Imaging. J. Am. Chem. Soc. 2019, 141 (16), 6631–6638. 10.1021/jacs.9b01261. PubMed DOI PMC

Jia H.-R.; Zhu Y.-X.; Duan Q.-Y.; Wu F.-G. Cell surface-localized imaging and sensing. Chem. Soc. Rev. 2021, 50 (10), 6240–6277. 10.1039/D1CS00067E. PubMed DOI

Aronoff M. R.; Hiebert P.; Hentzen N. B.; Werner S.; Wennemers H. Imaging and targeting LOX-mediated tissue remodeling with a reactive collagen peptide. Nat. Chem. Biol. 2021, 17 (8), 865–871. 10.1038/s41589-021-00830-6. PubMed DOI

Grenier V.; Walker A. S.; Miller E. W. A Small-Molecule Photoactivatable Optical Sensor of Transmembrane Potential. J. Am. Chem. Soc. 2015, 137 (34), 10894–10897. 10.1021/jacs.5b05538. PubMed DOI PMC

Sundukova M.; Prifti E.; Bucci A.; Kirillova K.; Serrao J.; Reymond L.; Umebayashi M.; Hovius R.; Riezman H.; Johnsson K.; Heppenstall P. A. A Chemogenetic Approach for the Optical Monitoring of Voltage in Neurons. Angew. Chem., Int. Ed. 2019, 58 (8), 2341–2344. 10.1002/anie.201812967. PubMed DOI PMC

Grenier V.; Daws B. R.; Liu P.; Miller E. W. Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators. J. Am. Chem. Soc. 2019, 141 (3), 1349–1358. 10.1021/jacs.8b11997. PubMed DOI PMC

Deal P. E.; Liu P.; Al-Abdullatif S. H.; Muller V. R.; Shamardani K.; Adesnik H.; Miller E. W. Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue. J. Am. Chem. Soc. 2020, 142 (1), 614–622. 10.1021/jacs.9b12265. PubMed DOI PMC

Ortiz G.; Liu P.; Deal P. E.; Nensel A. K.; Martinez K. N.; Shamardani K.; Adesnik H.; Miller E. W. A silicon-rhodamine chemical-genetic hybrid for far red voltage imaging from defined neurons in brain slice. RSC Chem. Biol. 2021, 2 (6), 1594–1599. 10.1039/D1CB00156F. PubMed DOI PMC

Kirk M. J.; Benlian B. R.; Han Y.; Gold A.; Ravi A.; Deal P. E.; Molina R. S.; Drobizhev M.; Dickman D.; Scott K.; Miller E. W. Voltage Imaging in Drosophila Using a Hybrid Chemical-Genetic Rhodamine Voltage Reporter. Front Neurosci 2021, 15, 75402710.3389/fnins.2021.754027. PubMed DOI PMC

Fiala T.; Wang J.; Dunn M.; Šebej P.; Choi S. J.; Nwadibia E. C.; Fialova E.; Martinez D. M.; Cheetham C. E.; Fogle K. J.; Palladino M. J.; Freyberg Z.; Sulzer D.; Sames D. Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. J. Am. Chem. Soc. 2020, 142 (20), 9285–9301. 10.1021/jacs.0c00861. PubMed DOI PMC

Fiala T.; Mosharov E. V.; Wang J.; Mendieta A. M.; Choi S. J.; Fialova E.; Hwu C.; Sulzer D.; Sames D. Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons. ACS Chem. Neurosci. 2022, 13 (8), 1251–1262. 10.1021/acschemneuro.1c00862. PubMed DOI PMC

Perry S. W.; Norman J. P.; Barbieri J.; Brown E. B.; Gelbard H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 2011, 50 (2), 98–115. 10.2144/000113610. PubMed DOI PMC

Lin B.; Liu Y.; Zhang X.; Fan L.; Shu Y.; Wang J. Membrane-Activated Fluorescent Probe for High-Fidelity Imaging of Mitochondrial Membrane Potential. ACS Sensors 2021, 6 (11), 4009–4018. 10.1021/acssensors.1c01390. PubMed DOI

Klier P. E. Z.; Martin J. G.; Miller E. W. Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter. J. Am. Chem. Soc. 2021, 143 (11), 4095–4099. 10.1021/jacs.0c13110. PubMed DOI PMC

Hernández-Juárez C.; Flores-Cruz R.; Jiménez-Sánchez A. Fluorescent probe for early mitochondrial voltage dynamics. Chem. Commun. 2021, 57 (45), 5526–5529. 10.1039/D1CC01944A. PubMed DOI

Saminathan A.; Devany J.; Veetil A. T.; Suresh B.; Pillai K. S.; Schwake M.; Krishnan Y. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 2021, 16 (1), 96–103. 10.1038/s41565-020-00784-1. PubMed DOI PMC

Klier P. E. Z.; Gest A. M. M.; Martin J. G.; Roo R.; Navarro M. X.; Lesiak L.; Deal P. E.; Dadina N.; Tyson J.; Schepartz A.; Miller E. W. Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. J. Am. Chem. Soc. 2022, 144 (27), 12138–12146. 10.1021/jacs.2c02664. PubMed DOI PMC

Adam Y. All-optical electrophysiology in behaving animals. J. Neurosci. Methods 2021, 353, 10910110.1016/j.jneumeth.2021.109101. PubMed DOI

Shcherbakova D. M. Near-infrared and far-red genetically encoded indicators of neuronal activity. J. Neurosci. Methods 2021, 362, 10931410.1016/j.jneumeth.2021.109314. PubMed DOI PMC

Dong C.; Zheng Y.; Long-Iyer K.; Wright E. C.; Li Y.; Tian L. Fluorescence Imaging of Neural Activity, Neurochemical Dynamics, and Drug-Specific Receptor Conformation with Genetically Encoded Sensors. Annu. Rev. Neurosci. 2022, 45 (1), 273–294. 10.1146/annurev-neuro-110520-031137. PubMed DOI PMC

Abdelfattah A. S.; Kawashima T.; Singh A.; Novak O.; Liu H.; Shuai Y.; Huang Y.-C.; Campagnola L.; Seeman S. C.; Yu J.; Zheng J.; Grimm J. B.; Patel R.; Friedrich J.; Mensh B. D.; Paninski L.; Macklin J. J.; Murphy G. J.; Podgorski K.; Lin B.-J.; Chen T.-W.; Turner G. C.; Liu Z.; Koyama M.; Svoboda K.; Ahrens M. B.; Lavis L. D.; Schreiter E. R. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 2019, 365 (6454), 699–704. 10.1126/science.aav6416. PubMed DOI

Abdelfattah A. S.; Zheng J.; Singh A.; Huang Y. C.; Reep D.; Tsegaye G.; Tsang A.; Arthur B. J.; Rehorova M.; Olson C. V. L.; Shuai Y.; Zhang L.; Fu T. M.; Milkie D. E.; Moya M. V.; Weber T. D.; Lemire A. L.; Baker C. A.; Falco N.; Zheng Q.; Grimm J. B.; Yip M. C.; Walpita D.; Chase M.; Campagnola L.; Murphy G. J.; Wong A. M.; Forest C. R.; Mertz J.; Economo M. N.; Turner G. C.; Koyama M.; Lin B. J.; Betzig E.; Novak O.; Lavis L. D.; Svoboda K.; Korff W.; Chen T. W.; Schreiter E. R.; Hasseman J. P.; Kolb I. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. Neuron 2023, 111 (10), 1547–1563.e9. 10.1016/j.neuron.2023.03.009. PubMed DOI PMC

Adam Y.; Kim J. J.; Lou S.; Zhao Y.; Xie M. E.; Brinks D.; Wu H.; Mostajo-Radji M. A.; Kheifets S.; Parot V.; Chettih S.; Williams K. J.; Gmeiner B.; Farhi S. L.; Madisen L.; Buchanan E. K.; Kinsella I.; Zhou D.; Paninski L.; Harvey C. D.; Zeng H.; Arlotta P.; Campbell R. E.; Cohen A. E. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 2019, 569 (7756), 413–417. 10.1038/s41586-019-1166-7. PubMed DOI PMC

Zhu M. H.; Jang J.; Milosevic M. M.; Antic S. D. Population imaging discrepancies between a genetically-encoded calcium indicator (GECI) versus a genetically-encoded voltage indicator (GEVI). Sci. Rep. 2021, 11 (1), 5295.10.1038/s41598-021-84651-6. PubMed DOI PMC

Weber T. D.; Moya M. V.; Kılıç K.; Mertz J.; Economo M. N. High-speed multiplane confocal microscopy for voltage imaging in densely labeled neuronal populations. Nat. Neurosci. 2023, 26 (9), 1642–1650. 10.1038/s41593-023-01408-2. PubMed DOI PMC

Song C.; Matlashov M.; Shcherbakova D.; Antic S. D.; Verkhusha V.; Knöpfel T. Characterization of two near-infrared genetically encoded voltage indicators. Neurophotonics 2024, 11 (2), 02420110.1117/1.NPh.11.2.024201. PubMed DOI PMC

Liu S.; Lin C.; Xu Y.; Luo H.; Peng L.; Zeng X.; Zheng H.; Chen P. R.; Zou P. A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons. Nat. Chem. 2021, 13 (5), 472–479. 10.1038/s41557-021-00641-1. PubMed DOI

Jang M. J.; Coughlin G. M.; Jackson C. R.; Chen X.; Chuapoco M. R.; Vendemiatti J. L.; Wang A. Z.; Gradinaru V. Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nat. Biotechnol. 2023, 41 (9), 1272–1286. 10.1038/s41587-022-01648-w. PubMed DOI PMC

Gubernator N. G.; Zhang H.; Staal R. G. W.; Mosharov E. V.; Pereira D. B.; Yue M.; Balsanek V.; Vadola P. A.; Mukherjee B.; Edwards R. H.; Sulzer D.; Sames D. Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals. Science 2009, 324 (5933), 1441–1444. 10.1126/science.1172278. PubMed DOI PMC

Dunn M.; Henke A.; Clark S.; Kovalyova Y.; Kempadoo K. A.; Karpowicz R. J.; Kandel E. R.; Sulzer D.; Sames D. Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nat. Commun. 2018, 9 (1), 2838.10.1038/s41467-018-05075-x. PubMed DOI PMC

Tjahjono N.; Jin Y.; Hsu A.; Roukes M.; Tian L. Letting the little light of mind shine: Advances and future directions in neurochemical detection. Neurosci. Res. 2022, 179, 65–78. 10.1016/j.neures.2021.11.012. PubMed DOI PMC

Blaxter M.; Archibald J. M.; Childers A. K.; Coddington J. A.; Crandall K. A.; Di Palma F.; Durbin R.; Edwards S. V.; Graves J. A. M.; Hackett K. J.; Hall N.; Jarvis E. D.; Johnson R. N.; Karlsson E. K.; Kress W. J.; Kuraku S.; Lawniczak M. K. N.; Lindblad-Toh K.; Lopez J. V.; Moran N. A.; Robinson G. E.; Ryder O. A.; Shapiro B.; Soltis P. S.; Warnow T.; Zhang G.; Lewin H. A. Why sequence all eukaryotes?. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (4), e211563611810.1073/pnas.2115636118. PubMed DOI PMC

Gross D.; Loew L. M.; Webb W. W. Optical Imaging of Cell Membrane Potential Chenges Induced by Applied Electric Fields. Biophys. J. 1986, 50, 339–348. 10.1016/S0006-3495(86)83467-1. PubMed DOI PMC

Urrego D.; Sánchez A.; Tomczak A. P.; Pardo L. A. The electric fence to cell-cycle progression: Do local changes in membrane potential facilitate disassembly of the primary cilium?. BioEssays 2017, 39 (6), 160019010.1002/bies.201600190. PubMed DOI

Cornejo V. H.; Ofer N.; Yuste R. Voltage compartmentalization in dendritic spines in vivo. Science 2022, 375, 82–86. 10.1126/science.abg0501. PubMed DOI PMC

Wybo W. A. M.; Torben-Nielsen B.; Nevian T.; Gewaltig M. O. Electrical Compartmentalization in Neurons. Cell Reports 2019, 26 (7), 1759–1773.e7. 10.1016/j.celrep.2019.01.074. PubMed DOI

Rizzuto R.; Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 2006, 86 (1), 369–408. 10.1152/physrev.00004.2005. PubMed DOI

Tour O.; Adams S. R.; Kerr R. A.; Meijer R. M.; Sejnowski T. J.; Tsien R. W.; Tsien R. Y. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat. Chem. Biol. 2007, 3 (7), 423–431. 10.1038/nchembio.2007.4. PubMed DOI PMC

Kim T. H.; Schnitzer M. J. Fluorescence imaging of large-scale neural ensemble dynamics. Cell 2022, 185 (1), 9–41. 10.1016/j.cell.2021.12.007. PubMed DOI PMC

Gest A. M. M.; Lazzari-Dean J. R.; Ortiz G.; Yaeger-Weiss S. K.; Boggess S. C.; Miller E. W. A red-emitting carborhodamine for monitoring and measuring membrane potential. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (14), e2315264121.10.1073/pnas.2315264121. PubMed DOI PMC

Roome C. J.; Kuhn B. Voltage imaging with ANNINE dyes and two-photon microscopy of Purkinje dendrites in awake mice. Neurosci. Res. 2020, 152, 15–24. 10.1016/j.neures.2019.11.007. PubMed DOI

Martin A.; Rivera-Fuentes P. A general strategy to develop fluorogenic polymethine dyes for bioimaging. Nat. Chem. 2024, 16 (1), 28–35. 10.1038/s41557-023-01367-y. PubMed DOI PMC

Treger J. S.; Priest M. F.; Iezzi R.; Bezanilla F. Real-Time Imaging of Electrical Signals with an Infrared FDA-Approved Dye. Biophys. J. 2014, 107 (6), L09–L12. 10.1016/j.bpj.2014.07.054. PubMed DOI PMC

Lee W.-L.; Westergaard X.; Hwu C.; Hwu J.; Fiala T.; Lacefield C.; Boltaev U.; Mendieta A. M.; Lin L.; Sonders M. S.; Brown K. R.; He K.; Asher W. B.; Javitch J. A.; Sulzer D.; Sames D. Molecular Design of SERTlight: A Fluorescent Serotonin Probe for Neuronal Labeling in the Brain. J. Am. Chem. Soc. 2024, 146 (14), 9564–9574. 10.1021/jacs.3c11617. PubMed DOI

Wang J.; Li B.; Qiu L.; Qiao X.; Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J. Biol. Eng. 2022, 16 (1), 18.10.1186/s13036-022-00298-5. PubMed DOI PMC

Kazemipour A.; Novak O.; Flickinger D.; Marvin J. S.; Abdelfattah A. S.; King J.; Borden P. M.; Kim J. J.; Al-Abdullatif S. H.; Deal P. E.; Miller E. W.; Schreiter E. R.; Druckmann S.; Svoboda K.; Looger L. L.; Podgorski K. Kilohertz frame-rate two-photon tomography. Nat. Methods 2019, 16 (8), 778–786. 10.1038/s41592-019-0493-9. PubMed DOI PMC

Wu J.; Liang Y.; Chen S.; Hsu C.-L.; Chavarha M.; Evans S. W.; Shi D.; Lin M. Z.; Tsia K. K.; Ji N. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 2020, 17 (3), 287–290. 10.1038/s41592-020-0762-7. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...