Scale-Dependent Effects of Plant Diversity Drivers Across Different Grassland Habitats in Ukraine
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39944903
PubMed Central
PMC11815339
DOI
10.1002/ece3.70941
PII: ECE370941
Knihovny.cz E-resources
- Keywords
- biodiversity, biodiversity drivers, fine spatial scale, grasslands, scale‐dependency, β‐diversity,
- Publication type
- Journal Article MeSH
Understanding the factors governing grassland biodiversity across different spatial scales is crucial for effective conservation and management. However, most studies focus on single grain sizes, leaving the scale-dependent mechanisms of biodiversity drivers unclear. We investigated how climate, soil properties, abiotic disturbance, and land use influence plant diversity across two fine spatial scales in various grassland types in Ukraine. Using spatially explicit data on plant species presence and their cover, collected at smaller (10 m2) and larger (100 m2) grain sizes, we assessed spatial β-diversity-the variability of biodiversity between scales. We analyzed whether the effects of ecological drivers on β-diversity are mediated by changes in species evenness, density (total cover), and intraspecific aggregation in plant community. In our study, the most influential factors of local plant diversity at both grain sizes were climate variables, followed by soil humus content, litter cover, and soil pH. Soil and litter effects were primarily driven by the response of locally rare species, while climate and grazing effects were driven by locally common species. The strength of most of these effects varied between spatial scales, affecting β-diversity. Soil properties influenced β-diversity through changes in total plant community cover, while the effects of climate and litter operated via changes in species evenness and aggregation. Our findings highlight that biodiversity responses to climate, soil factors, and litter depend on the size of the sampled area and reveal the role of total plant cover, evenness, and aggregation in driving fine-scale β-diversity in grasslands across different habitat types.
5 N Karazin Kharkiv National University Kharkiv Ukraine
Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany
Department of Biology University of Prince Edward Island Charlottetown Prince Edward Island Canada
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
F E Falz Fein Biosphere Reserve «Askania Nova» Kherson Ukraine
Faculty of Biology University of Warsaw Warsaw Poland
Freie Universität Berlin Institute of Biology Theoretical Ecology Berlin Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute for Evolutionary Ecology National Academy of Sciences of Ukraine Kyiv Ukraine
Kherson State University Ivano Frankivsk Ukraine
M G Kholodny Institute of Botany National Academy of Sciences of Ukraine Kyiv Ukraine
Vasyl' Stus Donetsk National University Vinnytsia Ukraine
Vegetation Ecology Research Group Institute of Natural Resource Sciences Wädenswil Switzerland
Yuriy Fedkovych Chernivtsi National University Chernivtsi Ukraine
See more in PubMed
Auestad, I. , Rydgren K., and Økland R. H.. 2008. “Scale‐Dependence of Vegetation‐Environment Relationships in Semi‐Natural Grasslands.” Journal of Vegetation Science 19, no. 1: 139–148. 10.3170/2007-8-18344. DOI
Bartha, S. , Campetella G., Kertész M., et al. 2011. “Beta Diversity and Community Differentiation in Dry Perennial Sand Grasslands.” Annali Di Botanica 1: 9–18.
Barton, P. S. , Cunningham S. A., Manning A. D., Gibb H., Lindenmayer D. B., and Didham R. K.. 2013. “The Spatial Scaling of Beta Diversity.” Global Ecology and Biogeography 22, no. 6: 639–647. 10.1111/geb.12031. DOI
Baselga, A. 2017. “Partitioning Abundance‐Based Multiple‐Site Dissimilarity Into Components: Balanced Variation in Abundance and Abundance Gradients.” Methods in Ecology and Evolution 8, no. 7: 799–808. 10.1111/2041-210X.12693. DOI
Baselga, A. , and Orme C. D. L.. 2012. “Betapart: An R Package for the Study of Beta Diversity.” Methods in Ecology and Evolution 3, no. 5: 808–812. 10.1111/j.2041-210X.2012.00224.x. DOI
Bates, D. , Maechler M., Bolker B., and Walker S.. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67, no. 1: 1–48. 10.18637/jss.v067.i01. DOI
Bergauer, M. , Dembicz I., Boch S., et al. 2022. “Scale‐Dependent Patterns and Drivers of Vascular Plant, Bryophyte and Lichen Diversity in Dry Grasslands of the Swiss Inneralpine Valleys.” Alpine Botany 132, no. 2: 195–209. 10.1007/s00035-022-00285-y. DOI
Biurrun, I. , Pielech R., Dembicz I., and Gillet F.. 2021. “Benchmarking Plant Diversity of Palaearctic Grasslands and Other Open Habitats.” Journal of Vegetation Science 32: e13050. 10.1111/jvs.13050. DOI
Blowes, S. A. , Daskalova G. N., Dornelas M., et al. 2022. “Local Biodiversity Change Reflects Interactions Among Changing Abundance, Evenness, and Richness.” Ecology 103, no. 12: e3820. 10.1002/ecy.3820. PubMed DOI
Borovyk, D. , Dembicz I., Dengler J., et al. 2023. “Plant Species Richness Records in Ukrainian Steppes.” Tuexenia 44: 225–239. 10.14471/2024.44.002. DOI
Buzhdygan, O. Y. , Meyer S. T., Weisser W. W., et al. 2020a. “Biodiversity Increases Multitrophic Energy Use Efficiency, Flow and Storage in Grasslands.” Nature Ecology & Evolution 4, no. 3: 393–405. 10.1038/s41559-020-1123-8. PubMed DOI
Buzhdygan, O. Y. , Tietjen B., Rudenko S. S., Nikorych V. A., and Petermann J. S.. 2020b. “Direct and Indirect Effects of Land‐Use Intensity on Plant Communities Across Elevation in Semi‐Natural Grasslands.” PLoS One 15, no. 11: e0231122. 10.1371/journal.pone.0231122. PubMed DOI PMC
Chalcraft, D. R. , Cox S. B., Clark C., et al. 2008. “Scale‐Dependent Responses of Plant Biodiversity to Nitrogen Enrichment.” Ecology 89, no. 8: 2165–2171. 10.1890/07-0971.1. PubMed DOI
Chao, A. , Chiu C. H., and Jost L.. 2014. “Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers.” Annual Review of Ecology, Evolution, and Systematics 45: 297–324. 10.1146/annurev-ecolsys-120213-091540. DOI
Chase, J. M. , and Knight T. M.. 2013. “Scale‐Dependent Effect Sizes of Ecological Drivers on Biodiversity: Why Standardised Sampling Is Not Enough.” Ecology Letters 16, no. Suppl 1: 17–26. 10.1111/ele.12112. PubMed DOI
Chase, J. M. , and Leibold M. A.. 2002. “Spatial Scale Dictates the Productivity‐Biodiversity Relationship.” Nature 416: 427–430. PubMed
Chase, J. M. , McGill B. J., McGlinn D. J., et al. 2018. “Embracing Scale‐Dependence to Achieve a Deeper Understanding of Biodiversity and Its Change Across Communities.” Ecology Letters 21, no. 11: 1737–1751. 10.1111/ele.13151. PubMed DOI
Chase, J. M. , Mcgill B. J., Thompson P. L., et al. 2019. “Species Richness Change Across Spatial Scales.” Oikos 128: 1079–1091. 10.1111/oik.05968. DOI
Chytrý, M. , Chiarucci A., Pärtel M., et al. 2019. “Progress in Vegetation Science: Trends Over the Past Three Decades and New Horizons.” Journal of Vegetation Science 30, no. 1: 1–4. 10.1111/jvs.12697. DOI
Chytrý, M. , Danihelka J., Ermakov N., et al. 2007. “Plant Species Richness in Continental Southern Siberia: Effects of pH and Climate in the Context of the Species Pool Hypothesis.” Global Ecology and Biogeography 16, no. 5: 668–678. 10.1111/j.1466-8238.2007.00320.x. DOI
Chytrý, M. , Dražil T., Hájek M., et al. 2015. “The Most Species‐Rich Plant Communities in The Czech Republic and Slovakia (With New World Records).” Preslia 87, no. 3: 217–278.
Chytrý, M. , and Otýpková Z.. 2003. “Plot Sizes Used for Phytosociological Sampling of European Vegetation.” Journal of Vegetation Science 14, no. 4: 563–570. 10.1111/j.1654-1103.2003.tb02183.x. DOI
Chytrý, M. , Tichý L., Hennekens S. M., et al. 2020. “EUNIS Habitat Classification: Expert System, Characteristic Species Combinations and Distribution Maps of European Habitats.” Applied Vegetation Science 23, no. 4: 648–675. 10.1111/avsc.12519. DOI
Chytrý, M. , Tichý L., and Rolecek J.. 2003. “Local and Regional Patterns of Species Richness Ph/Calclum Gradient.” Folia Geobotanica 38: 429–442.
de Bello, F. , Lepš J., and Sebastià M.‐T.. 2007. “Grazing Effects on the Species‐Area Relationship: Variation Along a Climatic Gradient in NE Spain.” Journal of Vegetation Science 18, no. 1: 25. 10.1658/1100-9233(2007)18[25:geotsr]2.0.co;2. DOI
DeMalach, N. , Saiz H., Zaady E., and Maestre F. T.. 2019. “Plant Species–Area Relationships Are Determined by Evenness, Cover and Aggregation in Drylands Worldwide.” Global Ecology and Biogeography 28, no. 3: 290–299. 10.1111/geb.12849. PubMed DOI PMC
Dembicz, I. , Dengler J., Steinbauer M. J., et al. 2021a. “Fine‐Grain Beta Diversity of Palaearctic Grassland Vegetation.” Journal of Vegetation Science 32: e13045. 10.1111/jvs.13045. DOI
Dembicz, I. , Velev N., Boch S., et al. 2021b. “Drivers of Plant Diversity in Bulgarian Dry Grasslands Vary Across Spatial Scales and Functional‐Taxonomic Groups.” Journal of Vegetation Science 32, no. 1: e12935. 10.1111/jvs.12935. DOI
Dengler, J. , Biurrun I., Boch S., Dembicz I., and Torok P.. 2020. “Grasslands of the Palaearctic Biogeographic Realm: Introduction and Synthesis.” In Encyclopedia of the World's Biomes (Vols. 3–5, Issue iDiv). Amsterdam, Netherlands: Elsevier. 10.1016/B978-0-12-409548-9.12432-7. DOI
Dengler, J. , Boch S., Filibeck G., et al. 2016. “Assessing Plant Diversity and Composition in Grass ‐ Lands Across Spatial Scales: The Standardised EDGG Sampling Methodology.” Bulletin of the Eurasian Dry Grassland Group 32: 13–30.
Dengler, J. , and Dembicz I.. 2023. “Should We Estimate Plant Cover in Percent or on Ordinal Scales?” Vegetation Classification and Survey 4: 131–138. 10.3897/VCS.98379. DOI
Díaz, S. , and Malhi Y.. 2022. “Biodiversity: Concepts, Patterns, Trends, and Perspectives.” Annual Review of Environment and Resources 47: 31–63.
Díaz, S. , Settele J., Brondízio E. S., et al. 2019. “Pervasive Human‐Driven Decline of Life on Earth Points to the Need for Transformative Change.” Science 366, no. 6471: eaax3100. 10.1126/science.aax3100. PubMed DOI
Dupré, C. , and Diekmann M.. 2001. “Differences in Species Richness and Life‐History Traits Between Grazed and Abandoned Grasslands in Southern Sweden.” Ecography 24, no. 3: 275–286. 10.1111/j.1600-0587.2001.tb00200.x. DOI
Enyedi, Z. M. , Ruprecht E., and Deák M.. 2008. “Long‐Term Effects of the Abandonment of Grazing on Steppe‐Like Grasslands.” Applied Vegetation Science 11, no. 1: 55–62. 10.3170/2007-7-18316. DOI
Euro+Med . “2006+ [Continuously Updated]: Euro+Med PlantBase ‐ The Information Resource for Euro‐Mediterranean Plant Diversity.” 2023. http://www.europlusmed.org.
Evans, D. 2016. “Habitat Complexes, a Neglected Part of the Eunis Habitats Classification?” 25th Meeting of European Vegetation Survey Roma (Italy), 35.
Facelli, J. M. , and Pickett S. T. A.. 1991. “Plant Litter: Its Dynamics and Effects on Plant Community Structure.” Botanical Review 57, no. 1: 1–32. 10.1007/bf02858763. DOI
Field, R. , Hawkins B. A., Cornell H. V., et al. 2009. “Spatial Species‐Richness Gradients Across Scales: A Meta‐Analysis.” Journal of Biogeography 36, no. 1: 132–147. 10.1111/j.1365-2699.2008.01963.x. DOI
Filibeck, G. , Sperandii M. G., Bazzichetto M., Mancini L. D., Rossini F., and Cancellieri L.. 2019. “Exploring the Drivers of Vascular Plant Richness at Very Fine Spatial Scale in Sub‐Mediterranean Limestone Grasslands (Central Apennines, Italy).” Biodiversity and Conservation 28, no. 10: 2701–2725. 10.1007/s10531-019-01788-7. DOI
Gaston, K. J. 2000. “Global Patterns in Biodiversity.” Nature 405: 220–227. PubMed
Grime, J. P. 1979. Plant Strategies, Vegetation Processes, and Ecosystem Properties. Hoboken, NJ: John Wiley & Sons, Ltd.
Hartig, F. 2022. “DHARMa: Residual Diagnostics for Hierarchical (Multi‐Level/Mixed) Regression Models.” R Package. https://cran.r‐project.org/package=DHARM.
He, F. , and Legendre P.. 2002. “Species Diversity Patterns Derived From Species–Area Models.” Ecology 83: 1185–1198. 10.1890/0012-9658(2002)083[1185:SDPDFS]2.0.CO;2. DOI
Herben, T. 2000. “Correlation Between Richness per Unit Area and the Species Pool Cannot Be Used to Demonstrate the Species Pool Effect.” Journal of Vegetation Science 11, no. 1: 123–126. 10.2307/3236783. DOI
Hillebrand, H. , Blasius B., Borer E. T., et al. 2018. “Biodiversity Change Is Uncoupled From Species Richness Trends: Consequences for Conservation and Monitoring.” Journal of Applied Ecology 55, no. 1: 169–184. 10.1111/1365-2664.12959. DOI
Hodgetts, N. G. , Söderström L., Blockeel T. L., et al. 2020. “An Annotated Checklist of Bryophytes of Europe, Macaronesia and Cyprus.” Journal of Bryology 42, no. 1: 1–116. 10.1080/03736687.2019.1694329. DOI
Jaeger, B. 2017. “r2glmm: Computes R Squared for Mixed (Multilevel) Models.” R Package Version 0.1.2 (0.1.2). https://github.com/bcjaeger/r2glmm.
Jost, L. 2006. “Entropy and Diversity.” Oikos 113, no. 2: 363–375. 10.1111/j.2006.0030-1299.14714.x. DOI
Karger, D. N. , Conrad O., Böhner J., et al. 2018. “Data From: Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 170122. 10.16904/envidat.228.v2.1. PubMed DOI PMC
Kondratyuk, S. Y. , Popova L. P., Khodosovtsev O. Y., Lokös L., Fedorenko N. M., and Kapets N. V.. 2021. “The Fourth Checklist of Ukrainian Lichen‐Forming and Lichenicolous Fungi With Analysis of Current Additions.” Acta Botanica Hungarica 63, no. 1–2: 97–163. 10.1556/034.63.2021.1-2.8. DOI
Kuzemko, A. , Budzhak V., Vasheniak Y., et al. 2022. “Atlas of Grassland Habitats of Ukraine.” [In Ukrainian]. Druk Art.
Kuzemko, A. , Steinbauer M. J., Becker T., et al. 2016. “Patterns and Drivers of Phytodiversity in Steppe Grasslands of Central Podolia (Ukraine).” Biodiversity and Conservation 25, no. 12: 2233–2250. 10.1007/s10531-016-1060-7. DOI
Ladouceur, E. , Isbell F., Clark A. T., et al. 2023. “The Recovery of Plant Community Composition Following Passive Restoration Across Spatial Scales, December 2022, 1–16.” Journal of Ecology 111, no. 4: 814–829. 10.1111/1365-2745.14063. DOI
Lamb, E. G. 2008. “Direct and Indirect Control of Grassland Community Structure by Litter, Resources, and Biomass.” Ecology 89, no. 1: 216–225. 10.1890/07-0393.1. PubMed DOI
May, F. , Gerstner K., McGlinn D. J., Xiao X., and Chase J. M.. 2018. “Mobsim: An r Package for the Simulation and Measurement of Biodiversity Across Spatial Scales.” Methods in Ecology and Evolution 9, no. 6: 1401–1408. 10.1111/2041-210X.12986. DOI
McGill, B. J. 2010a. “Matters of Scale.” Science 328, no. 5978: 575–576. 10.1126/science.1188528. PubMed DOI
McGill, B. J. 2010b. “Towards a Unification of Unified Theories of Biodiversity.” Ecology Letters 13, no. 5: 627–642. 10.1111/j.1461-0248.2010.01449.x. PubMed DOI
McGill, B. J. 2011. “Linking Biodiversity Patterns by Autocorrelated Random Sampling.” American Journal of Botany 98, no. 3: 481–502. 10.3732/ajb.1000509. PubMed DOI
Michalet, R. , Brooker R. W., Cavieres L. A., et al. 2006. “Do Biotic Interactions Shape Both Sides of the Humped‐Back Model of Species Richness in Plant Communities?” Ecology Letters 9, no. 7: 767–773. 10.1111/j.1461-0248.2006.00935.x. PubMed DOI
Mori, A. S. , Isbell F., and Seidl R.. 2018. “β‐Diversity, Community Assembly, and Ecosystem Functioning.” Trends in Ecology & Evolution 33, no. 7: 549–564. 10.1016/j.tree.2018.04.012. PubMed DOI PMC
Moysiyenko, I. , Vynokurov D., Shyriaieva D., et al. 2022. “Grasslands and Coastal Habitats of Southern Ukraine: First Results From the 15th EDGG Field Workshop.” Palaearctic Grasslands ‐ Journal of the Eurasian Dry Grassland Group 2022, no. 52: 44–83. 10.21570/edgg.pg.52.44-83. DOI
Newbold, T. , Hudson L. N., Hill S. L. L., et al. 2015. “Global Effects of Land Use on Local Terrestrial Biodiversity.” Nature 520, no. 7545: 45–50. 10.1038/nature14324. PubMed DOI
Oksanen, A. J. , Blanchet F. G., Kindt R., et al. 2018. “Vegan: Community Ecology Package.” 10.4135/9781412971874.n145. DOI
Oksanen, J. 1996. “Is the Humped Relationship Between Species Richness and Biomass an Artefact due to Plot Size?” Journal of Ecology 84, no. 2: 293. 10.2307/2261364. DOI
Olagoke, A. , Jeltsch F., Tietjen B., Berger U., Ritter H., and Maaß S.. 2023. “Small‐Scale Heterogeneity Shapes Grassland Diversity in Low‐To‐Intermediate Resource Environments.” Journal of Vegetation Science 34, no. 4: e13196. 10.1111/jvs.13196. DOI
Petermann, J. S. , and Buzhdygan O. Y.. 2021. “Grassland Biodiversity.” Current Biology 31, no. 19: R1195–R1201. 10.1016/j.cub.2021.06.060. PubMed DOI
Polyakova, M. A. , Dembicz I., Becker T., et al. 2016. “Scale‐ and Taxon‐Dependent Patterns of Plant Diversity in Steppes of Khakassia, South Siberia (Russia).” Biodiversity and Conservation 25, no. 12: 2251–2273. 10.1007/s10531-016-1093-y. DOI
Primack, R. B. , Miller‐Rushing A. J., Corlett R. T., et al. 2018. “Biodiversity Gains? The Debate on Changes in Local‐Vs Global‐Scale Species Richness.” Biological Conservation 219: A1–A3.
R Core Team . 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r‐project.org.
Rajaniemi, T. K. 2003. “Explaining Productivity‐Diversity Relationships in Plants.” Oikos 101, no. 3: 449–457. 10.1034/j.1600-0706.2003.12128.x. DOI
Roleček, J. , Dřevojan P., Hájková P., and Hájek M.. 2019. “Report of New Maxima of Fine‐Scale Vascular Plant Species Richness Recorded in East‐Central European Semi‐Dry Grasslands.” Tuexenia 39, no. March: 423–431. 10.14471/2019.39.008. DOI
Roswell, M. , Dushoff J., and Winfree R.. 2021. “A Conceptual Guide to Measuring Species Diversity.” Oikos 130, no. 3: 321–338. 10.1111/oik.07202. DOI
Ruprecht, E. , Enyedi M. Z., Eckstein R. L., and Donath T. W.. 2010. “Restorative Removal of Plant Litter and Vegetation 40 Years After Abandonment Enhances Re‐Emergence of Steppe Grassland Vegetation.” Biological Conservation 143, no. 2: 449–456. 10.1016/j.biocon.2009.11.012. DOI
Ruprecht, E. , and Szabó A.. 2012. “Grass Litter Is a Natural Seed Trap in Long‐Term Undisturbed Grassland.” Journal of Vegetation Science 23, no. 3: 495–504. 10.1111/j.1654-1103.2011.01376.x. DOI
Sala, O. E. , Chapin F. S. III, Armesto J. J., et al. 2000. “Global Biodiversity Scenarios for the Year 2100.” Science (New York, N.Y.) 287: 1770–1774. 10.1126/science.287.5459.1770. PubMed DOI
Schaminée, J. H. J. , Hennekens S. M., Janssen J. A. M., and Rodwell J. S.. 2018. “Updated Crosswalk of the Revised EUNIS Habitat Classification With the European Vegetation Classification and Indicator Species for the EUNIS Grassland, Shrubland and Forest Types.”
Schuster, B. , and Diekmann M.. 2003. “Changes in Species Density Along the Soil pH Gradient — Evidence From German Plant Communities.” Folia Geobotanica 38: 367–379.
Shapoval, V. , and Kuzemko A.. 2021. “Syntaxonomy of Steppe Depression Vegetation of Ukraine.” Vegetation Classification and Survey 2: 87–108. 10.3897/VCS/2021/62825. DOI
Siefert, A. , Ravenscroft C., Althoff D., et al. 2012. “Scale Dependence of Vegetation‐Environment Relationships: A Meta‐Analysis of Multivariate Data.” Journal of Vegetation Science 23, no. 5: 942–951. 10.1111/j.1654-1103.2012.01401.x. DOI
Šímová, I. , Li Y. M., and Storch D.. 2013. “Relationship Between Species Richness and Productivity in Plants: The Role of Sampling Effect, Heterogeneity and Species Pool.” Journal of Ecology 101, no. 1: 161–170. 10.1111/1365-2745.12011. DOI
Smith, A. B. 2010. “Caution With Curves: Caveats for Using the Species‐Area Relationship in Conservation.” Biological Conservation 143, no. 3: 555–564. 10.1016/j.biocon.2009.11.003. DOI
Socolar, J. B. , Gilroy J. J., Kunin W. E., and Edwards D. P.. 2016. “How Should Beta‐Diversity Inform Biodiversity Conservation? Conservation Targets at Multiple Spatial Scales.” Trends in Ecology & Evolution 31: 67–80. https://ac.els‐cdn.com/S016953471500289X/1‐s2.0‐S016953471500289X‐main.pdf?_tid=0aee4430‐0bd4‐11e8‐a91a‐00000aacb35e&acdnat=1517986778_0612927d48bf168559f8e9159f109ba4. PubMed
Spiegelberger, T. , Matthies D., Müller‐Schärer H., and Schaffner U.. 2006. “Scale‐Dependent Effects of Land Use on Plant Species Richness of Mountain Grassland in the European Alps.” Ecography 29, no. 4: 541–548. 10.1111/j.0906-7590.2006.04631.x. DOI
Srivastava, D. S. S. , and Lawton J. H.. 1998. “Why More Productive Sites Have More Species: An Experimental Test of Theory Using Tree Hole Communities.” American Naturalist 152, no. 4: 510–529. 10.1086/286187. PubMed DOI
Stein, A. , Gerstner K., and Kreft H.. 2014. “Environmental Heterogeneity as a Universal Driver of Species Richness Across Taxa, Biomes and Spatial Scales.” Ecology Letters 17, no. 7: 866–880. 10.1111/ele.12277. PubMed DOI
Stoll, P. , and Prati D.. 2001. “Intraspecific Aggregation Alters Competitive Interactions in Experimental Plant Communities.” Ecology 82, no. 2: 319–327. 10.1890/0012-9658(2001)082[0319:IAACII]2.0.CO;2. DOI
Storch, D. 2016. “The Theory of the Nested Species–Area Relationship: Geometric Foundations of Biodiversity Scaling.” Journal of Vegetation Science 27, no. 5: 880–891. 10.1111/jvs.12428. DOI
Storch, D. , Bohdalková E., and Okie J.. 2018. “The More‐Individuals Hypothesis Revisited: The Role of Community Abundance in Species Richness Regulation and the Productivity–Diversity Relationship.” Ecology Letters 21, no. 6: 920–937. 10.1111/ele.12941. PubMed DOI
Talebi, A. , Attar F., Naqinezhad A., Dembicz I., and Dengler J.. 2021. “Scale‐Dependent Patterns and Drivers of Plant Diversity in Steppe Grasslands of the Central Alborz Mts., Iran.” Journal of Vegetation Science 32, no. 2: 1–15. 10.1111/jvs.13005. DOI
Tamme, R. , Hiiesalu I., Laanisto L., Szava‐Kovats R., and Pärtel M.. 2010. “Environmental Heterogeneity, Species Diversity and Co‐Existence at Different Spatial Scales.” Journal of Vegetation Science 21, no. 4: 796–801. 10.1111/j.1654-1103.2010.01185.x. DOI
Tjørve, E. , Kunin W. E., Polce C., and Calf Tjørve K. M.. 2008. “Species‐Area Relationship: Separating the Effects of Species Abundance and Spatial Distribution.” Journal of Ecology 96, no. 6: 1141–1151. 10.1111/j.1365-2745.2008.01433.x. DOI
Török, P. , Janišová M., Kuzemko A., Rusina S., and Stevanovic Z. D.. 2018. “Grasslands, Their Threats and Management in Eastern Europe.” In Grasslands of the World: Diversity, Management and Conservation, edited by Squires V. R., Dengler J., Hua L., and Feng H., 64–88. Boca Raton, FL: CRC Press, Taylor & Francis Group. 10.1201/9781315156125. DOI
Turtureanu, P. D. , Palpurina S., Becker T., et al. 2014. “Scale‐ and Taxon‐Dependent Biodiversity Patterns of Dry Grassland Vegetation in Transylvania.” Agriculture, Ecosystems and Environment 182: 15–24. 10.1016/j.agee.2013.10.028. DOI
Ulrich, W. , Soliveres S., Maestre F. T., et al. 2014. “Climate and Soil Attributes Determine Plant Species Turnover in Global Drylands.” Journal of Biogeography 41, no. 12: 2307–2319. 10.1111/jbi.12377. PubMed DOI PMC
van der Merwe, H. , and van Rooyen M. W.. 2011. “Species‐Area Relationships in the Hantam‐Tanqua‐Roggeveld, Succulent Karoo, South Africa.” Biodiversity and Conservation 20, no. 6: 1183–1201. 10.1007/s10531-011-0022-3. DOI
Wassmuth, B. E. , Stoll P., Tscharntke T., and Thies C.. 2009. “Spatial Aggregation Facilitates Coexistence and Diversity of Wild Plant Species in Field Margins.” Perspectives in Plant Ecology, Evolution and Systematics 11, no. 2: 127–135. 10.1016/j.ppees.2009.02.001. DOI
Whittaker, R. H. 1972. “Evolution and Measurement of Species Diversity.” Taxon 21, no. 2/3: 213–251.
Wilson, J. B. , Peet R. K., Dengler J., and Pärtel M.. 2012. “Plant Species Richness: The World Records.” Journal of Vegetation Science 23, no. 4: 796–802. 10.1111/j.1654-1103.2012.01400.x. DOI