Genotype and Haplotype Analyses of TP53 Gene in Breast Cancer Patients: Association with Risk and Clinical Outcomes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26226484
PubMed Central
PMC4520609
DOI
10.1371/journal.pone.0134463
PII: PONE-D-15-04166
Knihovny.cz E-zdroje
- MeSH
- genetická predispozice k nemoci genetika MeSH
- genotyp MeSH
- geny p53 genetika MeSH
- haplotypy genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu genetika MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Variations in the TP53 gene have been suggested to play a role in many cancers, including breast. We previously observed an association between TP53 haplotypes based on four polymorphisms (rs17878362, rs1042522, rs12947788, and rs17884306) and the risk of colorectal and pancreatic cancer. Based on these results, in the present study, we have investigated the same polymorphisms and their haplotypes in 705 breast cancer cases and 611 healthy controls in relation to the disease risk, histopathological features of the tumor and clinical outcomes. In comparison to the most common haplotype A1-G-C-G, all the other identified haplotypes were globally associated with a significantly decreased breast cancer risk (P = 0.006). In particular, the A2-G-C-G haplotype was associated with a marked decreased risk of breast cancer when compared with the common haplotype (P = 0.0001). Moreover, rs1042522 in patients carrying the GC genotype and receiving only the anthracycline-based chemotherapy was associated with both overall and disease-free survival (recessive model for overall survival HR = 0.30 95% CI 0.11-0.80, P = 0.02 and for disease-free survival HR = 0.42 95% CI 0.21-0.84, P = 0.01). Present results suggest common genetic features in the susceptibility to breast and gastrointestinal cancers in respect to TP53 variations. In fact, similar haplotype distributions were observed for breast, colorectal, and pancreatic patients in associations with cancer risk. Rs1042522 polymorphism (even after applying the Dunn-Bonferroni correction for multiple testing) appears to be an independent prognostic marker in breast cancer patients.
Department of Oncology University Hospital Motol Prague Czech Republic
Department of Oncosurgery MEDICON Prague Czech Republic
Human Genetics Foundation Turin Italy
Institute of Biotechnology Academy of Sciences of the Czech Republic Prague Czech Republic
Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. 10.3322/caac.20107 PubMed DOI
Beggs AD, Hodgson SV (2009) Genomics and breast cancer: the different levels of inherited susceptibility. Eur J Hum Genet 17: 855–856. 10.1038/ejhg.2008.235 PubMed DOI PMC
Sapkota Y (2014) Germline DNA variations in breast cancer predisposition and prognosis: a systematic review of the literature. Cytogenet Genome Res 144: 77–91. 10.1159/000369045 PubMed DOI
Allen-Brady K, Cannon-Albright LA, Neuhausen SL, Camp NJ (2006) A role for XRCC4 in age at diagnosis and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15: 1306–1310. PubMed
Bewick MA, Conlon MS, Lafrenie RM (2006) Polymorphisms in XRCC1, XRCC3, and CCND1 and survival after treatment for metastatic breast cancer. J Clin Oncol 24: 5645–5651. PubMed
Haiman CA, Hsu C, de Bakker PI, Frasco M, Sheng X, Van Den Berg D, et al. (2008) Comprehensive association testing of common genetic variation in DNA repair pathway genes in relationship with breast cancer risk in multiple populations. Hum Mol Genet 17: 825–834. PubMed
Pooley KA, Baynes C, Driver KE, Tyrer J, Azzato EM, Pharoah PD, et al. (2008) Common single-nucleotide polymorphisms in DNA double-strand break repair genes and breast cancer risk. Cancer Epidemiol Biomarkers Prev 17: 3482–3489. 10.1158/1055-9965.EPI-08-0594 PubMed DOI
Sehl ME, Langer LR, Papp JC, Kwan L, Seldon JL, Arellano G, et al. (2009) Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer. Clin Cancer Res 15: 2192–2203. 10.1158/1078-0432.CCR-08-1417 PubMed DOI PMC
Lin WY, Camp NJ, Cannon-Albright LA, Allen-Brady K, Balasubramanian S, Reed MW, et al. A role for XRCC2 gene polymorphisms in breast cancer risk and survival. J Med Genet 48: 477–484. 10.1136/jmedgenet-2011-100018 PubMed DOI PMC
Mangoni M, Bisanzi S, Carozzi F, Sani C, Biti G, Livi L, et al. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys 81: 52–58. 10.1016/j.ijrobp.2010.04.023 PubMed DOI
Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF. (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8: 843–854. PubMed
Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. (2002) Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31: 33–36. PubMed
Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA, et al. (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39: 352–358. PubMed
Goldhirsch A, Gelber RD, Yothers G, Gray RJ, Green S, Bryant J, et al. (2001) Adjuvant therapy for very young women with breast cancer: need for tailored treatments. J Natl Cancer Inst Monogr: 44–51. PubMed
Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K, et al. (2008) NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 40: 844–853. 10.1038/ng.155 PubMed DOI
Budach W, Kammers K, Boelke E, Matuschek C (2013) Adjuvant radiotherapy of regional lymph nodes in breast cancer—a meta-analysis of randomized trials. Radiat Oncol 8: 267 10.1186/1748-717X-8-267 PubMed DOI PMC
Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093. PubMed PMC
Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9: 95–107. 10.1038/nrc2584 PubMed DOI
Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T. (2014) Analysis of TP53 Mutation Status in Human Cancer CellLines: A Reassessment. Hum Mutat. 35:756–65. 10.1002/humu.22556 PubMed DOI PMC
Dahabreh IJ, Schmid CH, Lau J, Varvarigou V, Murray S, Trikalinos TA. (2013) Genotype misclassification in genetic association studies of the rs1042522 TP53 (Arg72Pro) polymorphism: a systematic review of studies of breast, lung, colorectal, ovarian, and endometrial cancer. Am J Epidemiol 177: 1317–1325. 10.1093/aje/kws394 PubMed DOI PMC
Cheng H, Ma B, Jiang R, Wang W, Guo H, Shen N, et al. (2012) Individual and combined effects of MDM2 SNP309 and TP53 Arg72Pro on breast cancer risk: an updated meta-analysis. Mol Biol Rep 39: 9265–9274. 10.1007/s11033-012-1800-z PubMed DOI
Sagne C, Marcel V, Amadou A, Hainaut P, Olivier M, Hall J. (2013) A meta-analysis of cancer risk associated with the TP53 intron 3 duplication polymorphism (rs17878362): geographic and tumor-specific effects. Cell Death Dis 4: e492 10.1038/cddis.2013.24 PubMed DOI PMC
Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, et al. (2007) Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res 9: R34 PubMed PMC
Xu Y, Yao L, Ouyang T, Li J, Wang T, Fan Z, et al. (2005) p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin Cancer Res 11: 7328–7333. PubMed
Szkandera J, Absenger G, Dandachi N, Regitnig P, Lax S, Stotz M, et al. Analysis of functional germline polymorphisms for prediction of response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Mol Genet Genomics 287: 755–764. 10.1007/s00438-012-0715-7 PubMed DOI
Rodrigues P, Furriol J, Tormo E, Ballester S, Lluch A, Eroles P. (2013) Epistatic interaction of Arg72Pro TP53 and -710 C/T VEGFR1 polymorphisms in breast cancer: predisposition and survival. Mol Cell Biochem 379: 181–190. 10.1007/s11010-013-1640-8 PubMed DOI
Polakova V, Pardini B, Naccarati A, Landi S, Slyskova J, Novotny J, et al. (2009) Genotype and haplotype analysis of cell cycle genes in sporadic colorectal cancer in the Czech Republic. Hum Mutat 30: 661–668. 10.1002/humu.20931 PubMed DOI
Naccarati A, Pardini B, Polakova V, Smerhovsky Z, Vodickova L, Soucek P, et al. (2010) Genotype and haplotype analysis of TP53 gene and the risk of pancreatic cancer: an association study in the Czech Republic. Carcinogenesis 31: 666–670. 10.1093/carcin/bgq032 PubMed DOI
Hubackova M, Vaclavikova R, Ehrlichova M, Mrhalova M, Kodet R, Kubackova K, et al. (2012) Association of superoxide dismutases and NAD(P)H quinone oxidoreductases with prognosis of patients with breast carcinomas. Int J Cancer 130: 338–348. 10.1002/ijc.26006 PubMed DOI
Vaclavikova R, Ehrlichova M, Hlavata I, Pecha V, Kozevnikovova R, Trnkova M, et al. (2012) Detection of frequent ABCB1 polymorphisms by high-resolution melting curve analysis and their effect on breast carcinoma prognosis. Clin Chem Lab Med 50: 1999–2007. 10.1515/cclm-2012-0103 PubMed DOI
Kunicka T, Soucek P (2014) Importance of ABCC1 for cancer therapy and prognosis. Drug Metab Rev. PubMed
Naccarati A, Pardini B, Stefano L, Landi D, Slyskova J, Novotny J, et al. (2012) Polymorphisms in miRNA-binding sites of nucleotide excision repair genes and colorectal cancer risk. Carcinogenesis 33: 1346–1351. 10.1093/carcin/bgs172 PubMed DOI
Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, et al. (2012) Mutations and polymorphisms in TP53 gene—an overview on the role in colorectal cancer. Mutagenesis 27: 211–218. 10.1093/mutage/ger067 PubMed DOI
Pardini B, Kumar R, Naccarati A, Prasad RB, Forsti A, Polakova V, et al. (2011) MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res 721: 74–80. 10.1016/j.mrgentox.2010.12.008 PubMed DOI
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792. PubMed
Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, Polakova V, et al. (2008) DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res 638: 146–153. PubMed
Vymetalkova V, Pardini B, Rosa F, Di Gaetano C, Novotny J, Levy M, et al. (2014) Variations in mismatch repair genes and colorectal cancer risk and clinical outcome. Mutagenesis 29: 259–265. 10.1093/mutage/geu014 PubMed DOI
Wu D, Zhang Z, Chu H, Xu M, Xue Y, Zhu H, et al. (2013) Intron 3 sixteen base pairs duplication polymorphism of p53 contributes to breast cancer susceptibility: evidence from meta-analysis. PLoS One 8: e61662 10.1371/journal.pone.0061662 PubMed DOI PMC
Bisof V, Salihovic MP, Narancic NS, Skaric-Juric T, Jakic-Razumovic J, Janićijević B, et al. (2010) TP53 gene polymorphisms and breast cancer in Croatian women: a pilot study. Eur J Gynaecol Oncol 31: 539–544. PubMed
Trifa F, Karray-Chouayekh S, Mabrouk I, Baccouche S, Khabir A, Sellami-Boudawara T, et al. (2010) Haplotype analysis of p53 polymorphisms: Arg72Pro, Ins16bp and G13964C in Tunisian patients with familial or sporadic breast cancer. Cancer Epidemiol 34: 184–188. 10.1016/j.canep.2010.02.007 PubMed DOI
Lajin B, Alhaj Sakur A, Alachkar A (2013) Association between polymorphisms in apoptotic genes and susceptibility for developing breast cancer in Syrian women. Breast Cancer Res Treat 138: 611–619. 10.1007/s10549-013-2467-4 PubMed DOI
Crawford DC, Nickerson DA (2005) Definition and clinical importance of haplotypes. Annu Rev Med 56: 303–320. PubMed
Baudis M (2007) Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7: 226 PubMed PMC
Ghazani AA, Arneson N, Warren K, Pintilie M, Bayani J, Squire JA, et al. (2007) Genomic alterations in sporadic synchronous primary breast cancer using array and metaphase comparative genomic hybridization. Neoplasia 9: 511–520. PubMed PMC
Gao Y, Niu Y, Wang X, Wei L, Zhang R, Lv S, et al. Chromosome aberrations associated with centrosome defects: a study of comparative genomic hybridization in breast cancer. Hum Pathol 42: 1693–1701. 10.1016/j.humpath.2010.12.027 PubMed DOI
Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M (2007) TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26: 2157–2165. PubMed
Pharoah PD, Day NE, Caldas C (1999) Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br J Cancer 80: 1968–1973. PubMed PMC
Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, et al. (2006) The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–1167. PubMed
Tommiska J, Eerola H, Heinonen M, Salonen L, Kaare M, Tallila J, et al. (2005) Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin Cancer Res 11: 5098–5103. PubMed
Bisof V, Salihovic MP, Narancic NS, Skaric-Juric T, Jakic-Razumovic J, Janićijević B, et al. (2012) The TP53 gene polymorphisms and survival of sporadic breast cancer patients. Med Oncol 29: 472–478. 10.1007/s12032-011-9875-2 PubMed DOI
Szkandera J, Absenger G, Dandachi N, Regitnig P, Lax S, Stotz M, et al. (2012) Analysis of functional germline polymorphisms for prediction of response to anthracycline-based neoadjuvant chemotherapy in breast cancer. Mol Genet Genomics 287: 755–764. 10.1007/s00438-012-0715-7 PubMed DOI
Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutiérrez-Enríquez S, et al. (2004) A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23: 1954–1956. PubMed
Pim D, Banks L (2004) p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108: 196–199. PubMed
Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33: 357–365. PubMed
Sullivan A, Syed N, Gasco M, Bergamaschi D, Trigiante G, Attard M, et al. (2004) Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23: 3328–3337. PubMed
Schneider-Stock R, Boltze C, Peters B, Szibor R, Landt O, Meyer F, et al. (2004) Selective loss of codon 72 proline p53 and frequent mutational inactivation of the retained arginine allele in colorectal cancer. Neoplasia 6: 529–535. PubMed PMC
Bonafe M, Ceccarelli C, Farabegoli F, Santini D, Taffurelli M, Barbi C, et al. (2003) Retention of the p53 codon 72 arginine allele is associated with a reduction of disease-free and overall survival in arginine/proline heterozygous breast cancer patients. Clin Cancer Res 9: 4860–4864. PubMed
O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57: 4285–4300. PubMed
Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, et al. (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810. PubMed
Wahl AF, Donaldson KL, Fairchild C, Lee FY, Foster SA, Demers GW, et al. (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2: 72–79. PubMed
Fernandez-Cuesta L, Oakman C, Falagan-Lotsch P, Smoth KS, Quinaux E, Buyse M, et al. (2012) Prognostic and predictive value of TP53 mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02–98 phase III trial. Breast Cancer Res 14: R70 PubMed PMC
Geisler S, Lonning PE, Aas T, Johnsen H, Fluge O, Haugen DF, et al. (2001) Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61: 2505–2512. PubMed
Di Leo A, Tanner M, Desmedt C, Paesmans M, Cardoso F, Durbecq V, et al. (2007) p-53 gene mutations as a predictive marker in a population of advanced breast cancer patients randomly treated with doxorubicin or docetaxel in the context of a phase III clinical trial. Ann Oncol 18: 997–1003. PubMed