Quinolinic acid potentially links kidney injury to brain toxicity
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
T32 AG021890
NIA NIH HHS - United States
I01 BX003234
BLRD VA - United States
K01 AG066747
NIA NIH HHS - United States
TL1 TR002647
NCATS NIH HHS - United States
P30 AG066546
NIA NIH HHS - United States
K01 NS126489
NINDS NIH HHS - United States
I01 BX001340
BLRD VA - United States
T32 HL007446
NHLBI NIH HHS - United States
U01 DK114920
NIDDK NIH HHS - United States
I01 BX003195
BLRD VA - United States
PubMed
39946208
PubMed Central
PMC11949017
DOI
10.1172/jci.insight.180229
PII: 180229
Knihovny.cz E-zdroje
- Klíčová slova
- Amino acid metabolism, Chronic kidney disease, Nephrology, Neurological disorders, Neuroscience,
- MeSH
- akutní poškození ledvin * metabolismus MeSH
- chronická renální insuficience metabolismus MeSH
- kynurenin metabolismus MeSH
- kyselina chinolinová * metabolismus MeSH
- ledviny metabolismus patologie MeSH
- lidé MeSH
- metabolomika MeSH
- modely nemocí na zvířatech MeSH
- mozek * metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- tryptofan metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kynurenin MeSH
- kyselina chinolinová * MeSH
- tryptofan MeSH
Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 (Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of a focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells in the setting of kidney failure. These findings were associated with brain inflammation and cell death. Separate mouse models of ischemia-induced acute kidney injury and adenine-induced chronic kidney disease also exhibited systemic inflammation and accumulating toxic tryptophan metabolites. Patients with advanced chronic kidney disease (stage 3b-4 and stage 5) similarly demonstrated elevated plasma kynurenine metabolites, and quinolinic acid was uniquely correlated with fatigue and reduced quality of life. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.
Center for Precision Medicine and
Department of Biochemistry and Structural Biology
Department of Physiology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Population Health Sciences and
Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases and
South Texas Veterans Health Care System Audie L Murphy VA Hospital San Antonio Texas USA
Zobrazit více v PubMed
Baluarte JH. Neurological complications of renal disease. Semin Pediatr Neurol. 2017;24(1):25–32. doi: 10.1016/j.spen.2016.12.004. PubMed DOI
Goyal A, et al. Acute kidney injury. In: StatPearls. Treasure Island (FL); 2023.
Pereira M, et al. Acute kidney injury in patients with severe sepsis or septic shock: a comparison between the ‘Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease’ (RIFLE), Acute Kidney Injury Network (AKIN) and Kidney Disease: Improving Global Outcomes (KDIGO) classifications. Clin Kidney J. 2017;10(3):332–340. doi: 10.1093/ckj/sfw107. PubMed DOI PMC
CDC. Chronic Kidney Disease in the United States, 2023. https://www.cdc.gov/kidney-disease/php/data-research/?CDC_AAref_Val=https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html Updated May 15, 2024. Accessed February 14, 2025.
Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011) 2022;12(1):7–11. doi: 10.1016/j.kisu.2021.11.003. PubMed DOI PMC
Thomas R, et al. Chronic kidney disease and its complications. Prim Care. 2008;35(2):329–44, vii. doi: 10.1016/j.pop.2008.01.008. PubMed DOI PMC
Fletcher BR, et al. Symptom burden and health-related quality of life in chronic kidney disease: a global systematic review and meta-analysis. PLoS Med. 2022;19(4):e1003954. doi: 10.1371/journal.pmed.1003954. PubMed DOI PMC
Liu HS, et al. Regional cerebral blood flow in children and young adults with chronic kidney disease. Radiology. 2018;288(3):849–858. doi: 10.1148/radiol.2018171339. PubMed DOI PMC
Ikram MA, et al. Kidney function is related to cerebral small vessel disease. Stroke. 2008;39(1):55–61. doi: 10.1161/STROKEAHA.107.493494. PubMed DOI
Lau WL, et al. Chronic kidney disease increases cerebral microbleeds in mouse and man. Transl Stroke Res. 2020;11(1):122–134. doi: 10.1007/s12975-019-00698-8. PubMed DOI PMC
Rosner MH, et al. Classification of uremic toxins and their role in kidney failure. Clin J Am Soc Nephrol. 2021;16(12):1918–1928. doi: 10.2215/CJN.02660221. PubMed DOI PMC
Bobot M, et al. Uremic toxic blood-brain barrier disruption mediated by AhR activation leads to cognitive impairment during experimental renal dysfunction. J Am Soc Nephrol. 2020;31(7):1509–1521. doi: 10.1681/ASN.2019070728. PubMed DOI PMC
Saito R, et al. Systems biology analysis reveals role of MDM2 in diabetic nephropathy. JCI Insight. 2016;1(17):e87877. doi: 10.1172/jci.insight.87877. PubMed DOI PMC
Thomasova D, et al. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury. Cell Death Dis. 2016;7(11):e2482. doi: 10.1038/cddis.2016.390. PubMed DOI PMC
Zhang J, et al. High-throughput metabolomics and diabetic kidney disease progression: evidence from the Chronic Renal Insufficiency (CRIC) Study. Am J Nephrol. 2022;53(2–3):215–225. doi: 10.1159/000521940. PubMed DOI PMC
Cantaluppi V, et al. Interaction between systemic inflammation and renal tubular epithelial cells. Nephrol Dial Transplant. 2014;29(11):2004–2011. doi: 10.1093/ndt/gfu046. PubMed DOI
Ostergaard C, et al. Soluble urokinase receptor is elevated in cerebrospinal fluid from patients with purulent meningitis and is associated with fatal outcome. Scand J Infect Dis. 2004;36(1):14–19. doi: 10.1080/00365540310017366. PubMed DOI
De Almeida SM, et al. Higher cerebrospinal fluid soluble urokinase-type plasminogen activator receptor, but not interferon γ-inducible protein 10, correlate with higher working memory deficits. J Acquir Immune Defic Syndr. 2022;90(1):106–114. doi: 10.1097/QAI.0000000000002924. PubMed DOI PMC
Garcia-Monco JC, et al. Soluble urokinase receptor (uPAR, CD 87) is present in serum and cerebrospinal fluid in patients with neurologic diseases. J Neuroimmunol. 2002;129(1–2):216–223. doi: 10.1016/S0165-5728(02)00186-8. PubMed DOI
Hayek SS, et al. Soluble urokinase receptor and acute kidney injury. N Engl J Med. 2020;382(5):416–426. doi: 10.1056/NEJMoa1911481. PubMed DOI PMC
Kita T, et al. Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J Neurochem. 2002;82(2):258–268. doi: 10.1046/j.1471-4159.2002.00955.x. PubMed DOI
Fukui S, et al. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56(6):2007–2017. doi: 10.1111/j.1471-4159.1991.tb03460.x. PubMed DOI
Lugo-Huitron R, et al. Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxid Med Cell Longev. 2013;2013:104024. doi: 10.1155/2013/104024. PubMed DOI PMC
Schwarcz R, et al. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–477. doi: 10.1038/nrn3257. PubMed DOI PMC
Ali BH, et al. New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. J Pharmacol Toxicol Methods. 2013;68(3):384–393. doi: 10.1016/j.vascn.2013.05.001. PubMed DOI
Ali BH, et al. Some physiological and histological aspects of the gastrointestinal tract in a mouse model of chronic renal failure. J Pharmacol Toxicol Methods. 2014;69(2):162–166. doi: 10.1016/j.vascn.2013.09.001. PubMed DOI
de Jong WH, et al. Plasma tryptophan, kynurenine and 3-hydroxykynurenine measurement using automated on-line solid-phase extraction HPLC-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(7):603–609. doi: 10.1016/j.jchromb.2009.01.015. PubMed DOI
Karakawa S, et al. Simultaneous analysis of tryptophan and its metabolites in human plasma using liquid chromatography–electrospray ionization tandem mass spectrometry. CHROMATOGRAPHY. 2019;40(3):127–133. doi: 10.15583/jpchrom.2019.010. DOI
Zheng X, et al. Kynurenine 3-monooxygenase is a critical regulator of renal ischemia-reperfusion injury. Exp Mol Med. 2019;51(2):1–14. doi: 10.1038/s12276-019-0210-x. PubMed DOI PMC
Debnath S, et al. Tryptophan metabolism in patients with chronic kidney disease secondary to type 2 Diabetes: relationship to inflammatory markers. Int J Tryptophan Res. 2017;10:1178646917694600. doi: 10.1177/1178646917694600. PubMed DOI PMC
Connor TJ, et al. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett. 2008;441(1):29–34. doi: 10.1016/j.neulet.2008.06.007. PubMed DOI
Mithaiwala MN, et al. Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells. 2021;10(6):1548. doi: 10.3390/cells10061548. PubMed DOI PMC
Chouraki V, et al. Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimers Dement. 2017;13(12):1327–1336. doi: 10.1016/j.jalz.2017.04.009. PubMed DOI PMC
Schwarz MJ, et al. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci. 2013;263(4):345–352. doi: 10.1007/s00406-012-0384-x. PubMed DOI
Klatt S, et al. A six-metabolite panel as potential blood-based biomarkers for Parkinson’s disease. NPJ Parkinsons Dis. 2021;7(1):94. doi: 10.1038/s41531-021-00239-x. PubMed DOI PMC
Li Y, et al. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for Neuropsychiatric Lupus (NP-SLE) Int J Mol Sci. 2015;16(7):15150–15171. doi: 10.3390/ijms160715150. PubMed DOI PMC
Zwilling D, et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011;145(6):863–874. doi: 10.1016/j.cell.2011.05.020. PubMed DOI PMC
Hayek SS, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373(20):1916–1925. doi: 10.1056/NEJMoa1506362. PubMed DOI PMC
Yu L, et al. Diagnostic and prognostic significance of suPAR in traumatic brain injury. Neurol India. 2014;62(5):498–502. doi: 10.4103/0028-3886.144439. PubMed DOI
Frak W, et al. Role of uremic toxins, oxidative stress, and renal fibrosis in chronic kidney disease. Antioxidants (Basel) 2024;13(6):687. doi: 10.3390/antiox13060687. PubMed DOI PMC
Lv W, et al. Oxidative stress and renal fibrosis: recent insights for the development of novel therapeutic strategies. Front Physiol. 2018;9:105. doi: 10.3389/fphys.2018.00105. PubMed DOI PMC
Pawlak K, et al. Kynurenine, quinolinic acid--the new factors linked to carotid atherosclerosis in patients with end-stage renal disease. Atherosclerosis. 2009;204(2):561–566. doi: 10.1016/j.atherosclerosis.2008.10.002. PubMed DOI
Clark AJ, et al. Hepatocyte nuclear factor 4α mediated quinolinate phosphoribosylltransferase (QPRT) expression in the kidney facilitates resilience against acute kidney injury. Kidney Int. 2023;104(6):1150–1163. doi: 10.1016/j.kint.2023.09.013. PubMed DOI PMC
Parrott JM, et al. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation. 2016;13(1):124. doi: 10.1186/s12974-016-0590-y. PubMed DOI PMC
Liu M, et al. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol. 2008;19(7):1360–1370. doi: 10.1681/ASN.2007080901. PubMed DOI PMC
Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279(8):1356–1365. doi: 10.1111/j.1742-4658.2012.08485.x. PubMed DOI
Leipnitz G, et al. Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Dev Neurosci. 2005;23(8):695–701. doi: 10.1016/j.ijdevneu.2005.08.004. PubMed DOI
Behan WM, et al. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol. 1999;128(8):1754–1760. doi: 10.1038/sj.bjp.0702940. PubMed DOI PMC
Ting KK, et al. Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer’s disease. J Neuroinflammation. 2009;6:36. doi: 10.1186/1742-2094-6-36. PubMed DOI PMC
Tavares RG, et al. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem Int. 2002;40(7):621–627. doi: 10.1016/S0197-0186(01)00133-4. PubMed DOI
Tavares RG, et al. Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport. 2000;11(2):249–253. doi: 10.1097/00001756-200002070-00005. PubMed DOI
Kang Y, et al. A Multi-ligand imaging study exploring GABaergic receptor expression and inflammation in multiple sclerosis. Mol Imaging Biol. 2020;22(6):1600–1608. doi: 10.1007/s11307-020-01501-z. PubMed DOI PMC
Bayon-Cordero L, et al. GABA receptor agonists protect from excitotoxic damage induced by AMPA in oligodendrocytes. Front Pharmacol. 2022;13:897056. doi: 10.3389/fphar.2022.897056. PubMed DOI PMC
Long Z, et al. Decreased GABA levels in anterior cingulate cortex/medial prefrontal cortex in panic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2013;44:131–135. doi: 10.1016/j.pnpbp.2013.01.020. PubMed DOI PMC
Guerriero RM, et al. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015;15(5):27. doi: 10.1007/s11910-015-0545-1. PubMed DOI PMC
Zimmermann S, et al. Chronic kidney disease leads to microglial potassium efflux and inflammasome activation in the brain. Kidney Int. 2024;106(6):1101–1116. doi: 10.1016/j.kint.2024.06.028. PubMed DOI
Karbowska M, et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model. Sci Rep. 2020;10(1):9483. doi: 10.1038/s41598-020-66421-y. PubMed DOI PMC
Moroni F, et al. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. J Neurochem. 1986;47(6):1667–1671. doi: 10.1111/j.1471-4159.1986.tb13071.x. PubMed DOI
Heyes MP, et al. Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain. 2001;124(pt 5):1033–1042. doi: 10.1093/brain/124.5.1033. PubMed DOI
Valle M, et al. CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Brain. 2004;127(pt 5):1047–1060. doi: 10.1093/brain/awh130. PubMed DOI
Watne LO, et al. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J Clin Invest. 2023;133(2):e163472. doi: 10.1172/JCI163472. PubMed DOI PMC
Bell MJ, et al. Quinolinic acid in the cerebrospinal fluid of children after traumatic brain injury. Crit Care Med. 1999;27(3):493–497. doi: 10.1097/00003246-199903000-00023. PubMed DOI
Drewes JL, et al. Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART. J Neurovirol. 2015;21(4):449–463. doi: 10.1007/s13365-015-0334-2. PubMed DOI PMC
Kohler C, et al. Quinolinic acid phosphoribosyltransferase: preferential glial localization in the rat brain visualized by immunocytochemistry. Proc Natl Acad Sci U S A. 1987;84(10):3491–3495. doi: 10.1073/pnas.84.10.3491. PubMed DOI PMC
Ryden A, et al. Understanding the patient experience of chronic kidney disease stages 2-3b: a qualitative interview study with Kidney Disease Quality of Life (KDQOL-36) debrief. BMC Nephrol. 2022;23(1):201. doi: 10.1186/s12882-022-02826-3. PubMed DOI PMC
Gregg LP, et al. Fatigue in nondialysis chronic kidney disease: correlates and association with kidney outcomes. Am J Nephrol. 2019;50(1):37–47. doi: 10.1159/000500668. PubMed DOI PMC
Yapa HE, et al. Alterations in symptoms and health-related quality of life as kidney function deteriorates: a cross-sectional study. J Clin Nurs. 2021;30(11–12):1787–1796. doi: 10.1111/jocn.15738. PubMed DOI
Schefold JC, et al. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Nephrol Dial Transplant. 2009;24(6):1901–1908. doi: 10.1093/ndt/gfn739. PubMed DOI
Groven N, et al. Kynurenine metabolites and ratios differ between Chronic Fatigue Syndrome, Fibromyalgia, and healthy controls. Psychoneuroendocrinology. 2021;131:105287. doi: 10.1016/j.psyneuen.2021.105287. PubMed DOI
Akesson K, et al. Kynurenine pathway is altered in patients with SLE and associated with severe fatigue. Lupus Sci Med. 2018;5(1):e000254. doi: 10.1136/lupus-2017-000254. PubMed DOI PMC
Robbins RN, et al. Kynurenine metabolism as a mechanism to improve fatigue and physical function in postmenopausal breast cancer survivors following resistance training. J Funct Morphol Kinesiol. 2022;7(2):45. doi: 10.3390/jfmk7020045. PubMed DOI PMC
O’Connor JC, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511–522. doi: 10.1038/sj.mp.4002148. PubMed DOI PMC
Raison CL, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15(4):393–403. doi: 10.1038/mp.2009.116. PubMed DOI PMC
Aufhauser DD, Jr Improved renal ischemia tolerance in females influences kidney transplantation outcomes. J Clin Invest. 2016;126(5):1968–1977. doi: 10.1172/JCI84712. PubMed DOI PMC
Elliot SJ, et al. Estrogen deficiency accelerates progression of glomerulosclerosis in susceptible mice. Am J Pathol. 2003;162(5):1441–1448. doi: 10.1016/S0002-9440(10)64277-0. PubMed DOI PMC
Traykova-Brauch M, et al. An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nat Med. 2008;14(9):979–984. doi: 10.1038/nm.1865. PubMed DOI PMC
Grier JD, et al. Conditional allele of mdm2 which encodes a p53 inhibitor. Genesis. 2002;32(2):145–147. doi: 10.1002/gene.10066. PubMed DOI
Yamamoto T, et al. Renal L-type fatty acid--binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18(11):2894–2902. doi: 10.1681/ASN.2007010097. PubMed DOI
Pena MJ, et al. The effects of atrasentan on urinary metabolites in patients with type 2 diabetes and nephropathy. Diabetes Obes Metab. 2017;19(5):749–753. doi: 10.1111/dom.12864. PubMed DOI
Sharma K, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–1912. doi: 10.1681/ASN.2013020126. PubMed DOI PMC
Pallerla P, et al. Evaluation of amino acids and other related metabolites levels in end-stage renal disease (ESRD) patients on hemodialysis by LC/MS/MS and GC/MS. Anal Bioanal Chem. 2023;415(26):6491–6509. doi: 10.1007/s00216-023-04926-x. PubMed DOI
Sharma K, et al. Endogenous adenine mediates kidney injury in diabetic models and predicts diabetic kidney disease in patients. J Clin Invest. 2023;133(20):e170341. doi: 10.1172/JCI170341. PubMed DOI PMC
Schneider CA, et al. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Bankhead P, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Adeera Levin PES, Rudy W. Chapter 1: Definition and classification of CKD. Kidney Int Suppl (2011) 2013;3(1):19–62. doi: 10.1038/kisup.2012.64. PubMed DOI PMC
Levey AS, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC
Mendoza TR, et al. The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer. 1999;85(5):1186–1196. doi: 10.1002/(SICI)1097-0142(19990301)85:5<1186::AID-CNCR24>3.0.CO;2-N. PubMed DOI
Gonzalez AM, et al. Patient and caregiver priorities for outcomes in CKD: a multinational nominal group technique study. Am J Kidney Dis. 2020;76(5):679–689. doi: 10.1053/j.ajkd.2020.03.022. PubMed DOI
Pang Z, et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc. 2022;17(8):1735–1761. doi: 10.1038/s41596-022-00710-w. PubMed DOI