Workflow4Metabolomics (W4M): A User-Friendly Metabolomics Platform for Analysis of Mass Spectrometry and Nuclear Magnetic Resonance Data

. 2025 Feb ; 5 (2) : e70095.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39951023

Various spectrometric methods can be used to conduct metabolomics studies. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) coupled with separation methods, such as liquid or gas chromatography (LC and GC, respectively), are the most commonly used techniques. Once the raw data have been obtained, the real challenge lies in the bioinformatics required to conduct: (i) data processing (including preprocessing, normalization, and quality control); (ii) statistical analysis for comparative studies (such as univariate and multivariate analyses, including PCA or PLS-DA/OPLS-DA); (iii) annotation of the metabolites of interest; and (iv) interpretation of the relationships between key metabolites and the relevant phenotypes or scientific questions to be addressed. Here, we will introduce and detail a stepwise protocol for use of the Workflow4Metabolomics platform (W4M), which provides user-friendly access to workflows for processing of LC-MS, GC-MS, and NMR data. Those modular and extensible workflows are composed of existing standalone components (e.g., XCMS and CAMERA packages) as well as a suite of complementary W4M-implemented modules. This tool suite is accessible worldwide through a web interface and is hosted on UseGalaxy France. The extensible Virtual Research Environment (VRE) provided offers pre-configured workflows for metabolomics communities (platforms, end users, etc.), as well as possibilities for sharing among users. By providing a consistent ecosystem of tools and workflows through Galaxy, W4M makes it possible to process MS and NMR data from hundreds of samples using an ordinary personal computer, after step-by-step workflow optimization. © 2025 Wiley Periodicals LLC. Basic Protocol 1: W4M account creation, working history preparation, and data upload Support Protocol 1: How to prepare an NMR zip file Support Protocol 2: How to convert MS data from proprietary format to open format Support Protocol 3: How to get help with W4M (IFB forum) and how to report a problem on the GitHub repository Basic Protocol 2: LC-MS data processing Alternate Protocol 1: GC-MS data processing Alternate Protocol 2: NMR data processing Basic Protocol 3: Statistical analysis Basic Protocol 4: Annotation of metabolites from LC-MS data Alternate Protocol 3: Annotation of metabolites from NMR data.

Zobrazit více v PubMed

Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D’Auria, J., Ewald, J. C., Ewald, J., Fraser, P. D., Giavalisco, P., Hall, R. D., Heinemann, M., Link, H., Luo, J., Neumann, S., Nielsen, J., Perez de Souza, L., Saito, K., Sauer, U., Schroeder, F. C., … Fernie, A. R. (2021). Mass spectrometry‐based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 18(7), 747–756. https://doi.org/10.1038/s41592‐021‐01197‐1

Atieh, Z., Suhre, K., & Bensmail, H. (2013). MetFlexo: An Automated Simulation of Realistic H1‐NMR Spectra. Procedia Computer Science, 18, 1382–1391. https://doi.org/10.1016/j.procs.2013.05.305

Balcerczyk, A., Damblon, C., Elena‐Herrmann, B., Panthu, B., & Rautureau, G. J. P. (2020). Metabolomic approaches to study chemical exposure‐related metabolism alterations in mammalian cell cultures. International Journal of Molecular Sciences, 21(18), 6843. https://doi.org/10.3390/ijms21186843

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173. https://doi.org/10.1002/cem.785

Belhaj, M. R., Lawler, N. G., & Hoffman, N. J. (2021). Metabolomics and lipidomics: expanding the molecular landscape of exercise biology. Metabolites, 11(3), 151. https://doi.org/10.3390/metabo11030151

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812–2831. https://doi.org/10.1039/C3AY41907J

Broeckling, C. D., Afsar, F. A., Neumann, S., Ben‐Hur, A., & Prenni, J. E. (2014). RAMClust: A novel feature clustering method enables spectral‐matching‐based annotation for metabolomics data. Analytical Chemistry, 86(14), 6812–6817. https://doi.org/10.1021/ac501530d

Chen, C. J., Lee, D. Y., Yu, J., Lin, Y. N., & Lin, T. M. (2023). Recent advances in LC‐MS‐based metabolomics for clinical biomarker discovery. Mass Spectrometry Reviews, 42(6), 2349–2378. https://doi.org/10.1002/mas.21785

Comte, B., Monnerie, S., Brandolini‐Bunlon, M., Canlet, C., Castelli, F., Chu‐Van, E., Colsch, B., Fenaille, F., Joly, C., Jourdan, F., Lenuzza, N., Lyan, B., Martin, J. F., Migné, C., Morais, J. A., Pétéra, M., Poupin, N., Vinson, F., Thevenot, E., … Pujos‐Guillot, E. (2021). Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. EBioMedicine, 69, 103440. https://doi.org/10.1016/j.ebiom.2021.103440

Cristianini, N., & Ricci, E. (2008). Support vector machines. In M.‐Y. Kao (Ed.), Encyclopedia of Algorithms (pp. 928–932). Springer US.

da Silva, R. R., Dorrestein, P. C., & Quinn, R. A. (2015). Illuminating the dark matter in metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12549–12550. https://doi.org/10.1073/pnas.1516878112

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis‐McIntyre, S., Anderson, N., … Human Serum Metabolome, C. (2011). Procedures for large‐scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocol, 6(7), 1060–1083. https://doi.org/10.1038/nprot.2011.335

Fisher, L. D., van Belle, G., Heagerty, P. J., & Lumley, T. (2004). Biostatistics: A Methodology For the Health Sciences (2nd ed.). Wiley.

Fu, J., Zhang, Y., Wang, Y., Zhang, H., Liu, J., Tang, J., Yang, Q., Sun, H., Qiu, W., Ma, Y., Li, Z., Zheng, M., & Zhu, F. (2022). Optimization of metabolomic data processing using NOREVA. Nature Protocol, 17(1), 129–151. https://doi.org/10.1038/s41596‐021‐00636‐9

Galindo‐Prieto, B., Eriksson, L., & Trygg, J. (2014). Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 28(8), 623–632. https://doi.org/10.1002/cem.2627

Giacomoni, F., le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., Duperier, C., Tremblay‐Franco, M., Martin, J. F., Jacob, D., Goulitquer, S., Thévenot, E. A., & Caron, C. (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9), 1493–1495. https://doi.org/10.1093/bioinformatics/btu813

Goecks, J., Nekrutenko, A., Taylor, J., & The Galaxy, T. (2010). Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8), R86. https://doi.org/10.1186/gb‐2010‐11‐8‐r86

Guitton, Y., Tremblay‐Franco, M., le Corguille, G., Martin, J. F., Petera, M., Roger‐Mele, P., Delabrière, A., Goulitquer, S., Monsoor, M., Duperier, C., Canlet, C., Servien, R., Tardivel, P., Caron, C., Giacomoni, F., & Thévenot, E. A. (2017). Create, run, share, publish, and reference your LC‐MS, FIA‐MS, GC‐MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. International Journal of Biochemistry & Cell Biology, 93, 89–101. https://doi.org/10.1016/j.biocel.2017.07.002

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(7‐8), 1157–1182. https://doi.org/10.1162/153244303322753616

Hao, J., Liebeke, M., Astle, W., de Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocol, 9(6), 1416–1427. https://doi.org/10.1038/nprot.2014.090

Hecht, H., Skoryk, M., Cech, M., & Price, E. J. (2022). RIAssigner: A package for gas chromatographic retention index calculation. Journal of Open Source Software, 7(75), 4337. https://doi.org/10.21105/joss.04337

Heuckeroth, S., Damiani, T., Smirnov, A., Mokshyna, O., Brungs, C., Korf, A., Smith, J. D., Stincone, P., Dreolin, N., Nothias, L. F., Hyötyläinen, T., Orešič, M., Karst, U., Dorrestein, P. C., Petras, D., Du, X., van der Hooft, J. J. J., Schmid, R., & Pluskal, T. (2024). Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nature Protocol, 19(9), 2597–2641. https://doi.org/10.1038/s41596‐024‐00996‐y

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MacDonald, J., Obenchain, V., Oleś, A. K., … Morgan, M. (2015). Orchestrating high‐throughput genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252

Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics, 47(1), 64–79. https://doi.org/10.1198/004017004000000563

Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536. https://doi.org/10.1093/bioinformatics/btn323

Kováts, E. (1958). Gas‐chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta, 41(7), 1915–1932. https://doi.org/10.1002/hlca.19580410703

Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289. https://doi.org/10.1021/ac202450g

Kumari, S., Stevens, D., Kind, T., Denkert, C., & Fiehn, O. (2011). Applying in‐silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC‐TOF mass spectrometry. Analytical Chemistry, 83(15), 5895–5902. https://doi.org/10.1021/ac2006137

Lawson, T. N., Weber, R. J., Jones, M. R., Chetwynd, A. J., Rodri Guez‐Blanco, G., di Guida, R., Viant, M. R., & Dunn, W. B. (2017). msPurity: Automated evaluation of precursor ion purity for mass spectrometry‐based fragmentation in metabolomics. Analytical Chemistry, 89(4), 2432–2439. https://doi.org/10.1021/acs.analchem.6b04358

Mallard, W. G., Andriamaharavo, N. R., Mirokhin, Y. A., Halket, J. M., & Stein, S. E. (2014). Creation of libraries of recurring mass spectra from large data sets assisted by a dual‐column workflow. Analytical Chemistry, 86(20), 10231–10238. https://doi.org/10.1021/ac502379x

Martin, M., Legat, B., Leenders, J., Vanwinsberghe, J., Rousseau, R., Boulanger, B., Eilers, P. H. C., de Tullio, P., & Govaerts, B. (2018). PepsNMR for (1)H NMR metabolomic data pre‐processing. Analytica Chimica Acta, 1019, 1–13. https://doi.org/10.1016/j.aca.2018.02.067

Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics, 17(5), 49. https://doi.org/10.1007/s11306‐021‐01796‐1

Mullowney, M. W., Duncan, K. R., Elsayed, S. S., Garg, N., van der Hooft, J. J. J., Martin, N. I., … Medema, M. H. (2023). Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov, 22(11), 895–916. https://doi.org/10.1038/s41573‐023‐00774‐7

Nash, W. J., & Dunn, W. B. (2019). From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography‐mass spectrometry data. TrAC Trends in Analytical Chemistry, 120, 115324. https://doi.org/10.1016/j.trac.2018.11.022

Olivon, F., Elie, N., Grelier, G., Roussi, F., Litaudon, M., & Touboul, D. (2018). MetGem software for the generation of molecular networks based on the t‐SNE algorithm. Analytical Chemistry, 90(23), 13900–13908. https://doi.org/10.1021/acs.analchem.8b03099

Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314

Paulhe, N., Canlet, C., Damont, A., Peyriga, L., Durand, S., Deborde, C., Alves, S., Bernillon, S., Berton, T., Bir, R., Bouville, A., Cahoreau, E., Centeno, D., Costantino, R., Debrauwer, L., Delabrière, A., Duperier, C., Emery, S., Flandin, A., … Giacomoni, F. (2022). PeakForest: A multi‐platform digital infrastructure for interoperable metabolite spectral data and metadata management. Metabolomics, 18(6), 40. https://doi.org/10.1007/s11306‐022‐01899‐3

Perez de Souza, L., Alseekh, S., Scossa, F., & Fernie, A. R. (2021). Ultra‐high‐performance liquid chromatography high‐resolution mass spectrometry variants for metabolomics research. Nat Methods, 18(7), 733–746. https://doi.org/10.1038/s41592‐021‐01116‐4

Perez de Souza, L., & Fernie, A. R. (2024). Computational methods for processing and interpreting mass spectrometry‐based metabolomics. Essays in Biochemistry, 68(1), 5–13. https://doi.org/10.1042/EBC20230019

Pryke, A., Mostaghim, S., & Nazemi, A. (2007). Heatmap Visualization of Population Based Multi Objective Algorithms. Paper presented at the Evolutionary Multi‐Criterion Optimization, Berlin, Heidelberg.

Ravanbakhsh, S., Liu, P., Bjorndahl, T. C., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., & Wishart, D. S. (2015). Accurate, fully‐automated NMR spectral profiling for metabolomics. PLoS One, 10(5), e0124219. https://doi.org/10.1371/journal.pone.0124219

Rinaudo, P., Boudah, S., Junot, C., & Thevenot, E. A. (2016). biosigner: A new method for the discovery of significant molecular signatures from omics data. Frontiers in Molecular Biosciences, 3, 26. https://doi.org/10.3389/fmolb.2016.00026

Roca, M., Alcoriza, M. I., Garcia‐Canaveras, J. C., & Lahoz, A. (2021). Reviewing the metabolome coverage provided by LC‐MS: Focus on sample preparation and chromatography‐A tutorial. Analytica Chimica Acta, 1147, 38–55. https://doi.org/10.1016/j.aca.2020.12.025

Rost, H. L., Sachsenberg, T., Aiche, S., Bielow, C., Weisser, H., Aicheler, F., Andreotti, S., Ehrlich, H.‐C., Gutenbrunner, P., EKenar, P., Liang, X., Nahnsen, S., Nilse, L., Pfeuffer, J., Rosenberger, G., Rurik, M., Schmitt, U., Veit, J., Walzer, M., … Kohlbacher, O. (2016). OpenMS: A flexible open‐source software platform for mass spectrometry data analysis. Nature Methods, 13(9), 741–748. https://doi.org/10.1038/nmeth.3959

Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361–374. https://doi.org/10.1007/s11306‐013‐0598‐6

Schmid, R., Heuckeroth, S., Korf, A., Smirnov, A., Myers, O., Dyrlund, T. S., Bushuiev, R., Murray, K. J., Hoffmann, N., Lu, M., Sarvepalli, A., Zhang, Z., Fleischauer, M., Dührkop, K., Wesner, M., Hoogstra, S. J., Rudt, E., Mokshyna, O., … Pluskal, T. (2023). Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology, 41(4), 447–449. https://doi.org/10.1038/s41587‐023‐01690‐2

Simon‐Manso, Y., Marupaka, R., Yan, X., Liang, Y., Telu, K. H., Mirokhin, Y., & Stein, S. E. (2019). Mass spectrometry fingerprints of small‐molecule metabolites in biofluids: Building a spectral library of recurrent spectra for urine analysis. Analytical Chemistry, 91(18), 12021–12029. https://doi.org/10.1021/acs.analchem.9b02977

Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78(3), 779–787. https://doi.org/10.1021/ac051437y

Stauffer, D. B., McLafferty, F. W., Ellis, R. D., & Peterson, D. W. (1985). Adding forward searching capabilities to a reverse search algorithm for unknown mass spectra. Analytical Chemistry, 57(3), 771–773. https://doi.org/10.1021/ac00280a045

Stein, S. E. (1995). Chemical substructure identification by mass spectral library searching. Journal of the American Society for Mass Spectrometry, 6(8), 644–655. https://doi.org/10.1016/1044‐0305(95)00291‐K

Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306‐007‐0082‐2

Tardivel, P. J. C., Canlet, C., Lefort, G., Tremblay‐Franco, M., Debrauwer, L., Concordet, D., & Servien, R. (2017). ASICS: An automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics, 13(10), 109. https://doi.org/10.1007/s11306‐017‐1244‐5

Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. https://doi.org/10.1186/1471‐2105‐9‐504

Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web‐based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. https://doi.org/10.1021/ac300698c

Thevenot, E. A., Roux, A., Xu, Y., Ezan, E., & Junot, C. (2015). Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research, 14(8), 3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354

Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS‐DIAL: Data‐independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods, 12(6), 523–526. https://doi.org/10.1038/nmeth.3393

Ulaszewska, M. M., Weinert, C. H., Trimigno, A., Portmann, R., Andres Lacueva, C., Badertscher, R., Brennan, L., Brunius, C., Bub, A., Capozzi, F., Cialiè Rosso, M., Cordero, C. E., Daniel, H., Durand, S., Egert, B., Ferrario, P. G., Feskens, E. J. M., Franceschi, P., Garcia‐Aloy, M., … Vergeres, G. (2019). Nutrimetabolomics: An integrative action for metabolomic analyses in human nutritional studies. Molecular Nutrition & Food Research, 63(1), e1800384. https://doi.org/10.1002/mnfr.201800384

Urban, J., Afseth, N. K., & Štys, D. (2014). Fundamental definitions and confusions in mass spectrometry about mass assignment, centroiding and resolution. TrAC Trends in Analytical Chemistry, 53, 126–136. https://doi.org/10.1016/j.trac.2013.07.010

van Den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas‐liquid partition chromatography. Journal of Chromatography A, 11, 463–471. https://doi.org/10.1016/s0021‐9673(01)80947‐x

van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141. https://doi.org/10.1021/pr900499r

Vazquez, U. E. (2018). Impact de souches commensales et probiotiques d'Escherichia coli sur la physiopathologie de l'hôte. Doctoral dissertation, Sorbonne Université. Hal Theses, https://theses.hal.science/tel‐02866073

Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K. A., Dommisse, R., Lemiere, F., Verschoren, A., Goethals, B., & Laukens, K. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405. https://doi.org/10.1186/1471‐2105‐12‐405

Wang, J., Wang, C., & Han, X. (2019). Tutorial on lipidomics. Analytica Chimica Acta, 1061, 28–41. https://doi.org/10.1016/j.aca.2019.01.043

Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto‐Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W.‐T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval‐Calderón, M., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol, 34(8), 828–837. https://doi.org/10.1038/nbt.3597

Weber, R. J., Li, E., Bruty, J., He, S., & Viant, M. R. (2012). MaConDa: A publicly accessible mass spectrometry contaminants database. Bioinformatics, 28(21), 2856–2857. https://doi.org/10.1093/bioinformatics/bts527

Wehrens, R., Weingart, G., & Mattivi, F. (2014). metaMS: An open‐source pipeline for GC‐MS‐based untargeted metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 966, 109–116. https://doi.org/10.1016/j.jchromb.2014.02.051

Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres‐Calzada, C., Hiebert‐Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50(D1), D622–D631. https://doi.org/10.1093/nar/gkab1062

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., … Querengesser, L. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, (Database issue), D521–526. https://doi.org/10.1093/nar/gkl923

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS‐regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169‐7439(01)00155‐1

Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–660. https://doi.org/10.1093/nar/gkp356

Xia, J., & Wishart, D. S. (2011). Web‐based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760. https://doi.org/10.1038/nprot.2011.319

Zhou, J., & Zhong, L. (2022). Applications of liquid chromatography‐mass spectrometry based metabolomics in predictive and personalized medicine. Frontiers in Molecular Biosciences, 9, 1049016. https://doi.org/10.3389/fmolb.2022.1049016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...