Workflow4Metabolomics (W4M): A User-Friendly Metabolomics Platform for Analysis of Mass Spectrometry and Nuclear Magnetic Resonance Data
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
39951023
DOI
10.1002/cpz1.70095
Knihovny.cz E-zdroje
- Klíčová slova
- GC–MS, LC–MS, NMR, annotation, chemometrics, statistics, untargeted metabolomics,
- MeSH
- hmotnostní spektrometrie * metody MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- metabolomika * metody MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- průběh práce MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Various spectrometric methods can be used to conduct metabolomics studies. Nuclear magnetic resonance (NMR) or mass spectrometry (MS) coupled with separation methods, such as liquid or gas chromatography (LC and GC, respectively), are the most commonly used techniques. Once the raw data have been obtained, the real challenge lies in the bioinformatics required to conduct: (i) data processing (including preprocessing, normalization, and quality control); (ii) statistical analysis for comparative studies (such as univariate and multivariate analyses, including PCA or PLS-DA/OPLS-DA); (iii) annotation of the metabolites of interest; and (iv) interpretation of the relationships between key metabolites and the relevant phenotypes or scientific questions to be addressed. Here, we will introduce and detail a stepwise protocol for use of the Workflow4Metabolomics platform (W4M), which provides user-friendly access to workflows for processing of LC-MS, GC-MS, and NMR data. Those modular and extensible workflows are composed of existing standalone components (e.g., XCMS and CAMERA packages) as well as a suite of complementary W4M-implemented modules. This tool suite is accessible worldwide through a web interface and is hosted on UseGalaxy France. The extensible Virtual Research Environment (VRE) provided offers pre-configured workflows for metabolomics communities (platforms, end users, etc.), as well as possibilities for sharing among users. By providing a consistent ecosystem of tools and workflows through Galaxy, W4M makes it possible to process MS and NMR data from hundreds of samples using an ordinary personal computer, after step-by-step workflow optimization. © 2025 Wiley Periodicals LLC. Basic Protocol 1: W4M account creation, working history preparation, and data upload Support Protocol 1: How to prepare an NMR zip file Support Protocol 2: How to convert MS data from proprietary format to open format Support Protocol 3: How to get help with W4M (IFB forum) and how to report a problem on the GitHub repository Basic Protocol 2: LC-MS data processing Alternate Protocol 1: GC-MS data processing Alternate Protocol 2: NMR data processing Basic Protocol 3: Statistical analysis Basic Protocol 4: Annotation of metabolites from LC-MS data Alternate Protocol 3: Annotation of metabolites from NMR data.
Centre Bretagne Normandie INRAE UMR 1349 IGEPP Domaine de la Motte Le Rheu France
IFB Institut Français de Bioinformatique CNRS UMS 3601 Génoscope Évry France
Oniris INRAE LABERCA Nantes France
Pharmacognosy Bioanalysis and Drug Development and Analytical Platform Brussels Belgium
Pharmacotherapy and Pharmaceutics Faculty of Pharmacy Université libre de Bruxelles Brussels Belgium
RECETOX Faculty of Science Masaryk University Brno Czech Republic
School of Biosciences University of Birmingham Birmingham United Kingdom
Sorbonne Université CNRS FR2424 ABiMS Station Biologique Roscoff France
These authors contributed equally to this work
Université Rouen Normandie INSA Rouen Normandie CNRS PBS UMR 6270 Rouen France
Université Rouen Normandie INSERM US 51 CNRS UAR 2026 HeRacLeS PISSARO Rouen France
Zobrazit více v PubMed
Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D’Auria, J., Ewald, J. C., Ewald, J., Fraser, P. D., Giavalisco, P., Hall, R. D., Heinemann, M., Link, H., Luo, J., Neumann, S., Nielsen, J., Perez de Souza, L., Saito, K., Sauer, U., Schroeder, F. C., … Fernie, A. R. (2021). Mass spectrometry‐based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 18(7), 747–756. https://doi.org/10.1038/s41592‐021‐01197‐1
Atieh, Z., Suhre, K., & Bensmail, H. (2013). MetFlexo: An Automated Simulation of Realistic H1‐NMR Spectra. Procedia Computer Science, 18, 1382–1391. https://doi.org/10.1016/j.procs.2013.05.305
Balcerczyk, A., Damblon, C., Elena‐Herrmann, B., Panthu, B., & Rautureau, G. J. P. (2020). Metabolomic approaches to study chemical exposure‐related metabolism alterations in mammalian cell cultures. International Journal of Molecular Sciences, 21(18), 6843. https://doi.org/10.3390/ijms21186843
Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173. https://doi.org/10.1002/cem.785
Belhaj, M. R., Lawler, N. G., & Hoffman, N. J. (2021). Metabolomics and lipidomics: expanding the molecular landscape of exercise biology. Metabolites, 11(3), 151. https://doi.org/10.3390/metabo11030151
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812–2831. https://doi.org/10.1039/C3AY41907J
Broeckling, C. D., Afsar, F. A., Neumann, S., Ben‐Hur, A., & Prenni, J. E. (2014). RAMClust: A novel feature clustering method enables spectral‐matching‐based annotation for metabolomics data. Analytical Chemistry, 86(14), 6812–6817. https://doi.org/10.1021/ac501530d
Chen, C. J., Lee, D. Y., Yu, J., Lin, Y. N., & Lin, T. M. (2023). Recent advances in LC‐MS‐based metabolomics for clinical biomarker discovery. Mass Spectrometry Reviews, 42(6), 2349–2378. https://doi.org/10.1002/mas.21785
Comte, B., Monnerie, S., Brandolini‐Bunlon, M., Canlet, C., Castelli, F., Chu‐Van, E., Colsch, B., Fenaille, F., Joly, C., Jourdan, F., Lenuzza, N., Lyan, B., Martin, J. F., Migné, C., Morais, J. A., Pétéra, M., Poupin, N., Vinson, F., Thevenot, E., … Pujos‐Guillot, E. (2021). Multiplatform metabolomics for an integrative exploration of metabolic syndrome in older men. EBioMedicine, 69, 103440. https://doi.org/10.1016/j.ebiom.2021.103440
Cristianini, N., & Ricci, E. (2008). Support vector machines. In M.‐Y. Kao (Ed.), Encyclopedia of Algorithms (pp. 928–932). Springer US.
da Silva, R. R., Dorrestein, P. C., & Quinn, R. A. (2015). Illuminating the dark matter in metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 112(41), 12549–12550. https://doi.org/10.1073/pnas.1516878112
Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis‐McIntyre, S., Anderson, N., … Human Serum Metabolome, C. (2011). Procedures for large‐scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocol, 6(7), 1060–1083. https://doi.org/10.1038/nprot.2011.335
Fisher, L. D., van Belle, G., Heagerty, P. J., & Lumley, T. (2004). Biostatistics: A Methodology For the Health Sciences (2nd ed.). Wiley.
Fu, J., Zhang, Y., Wang, Y., Zhang, H., Liu, J., Tang, J., Yang, Q., Sun, H., Qiu, W., Ma, Y., Li, Z., Zheng, M., & Zhu, F. (2022). Optimization of metabolomic data processing using NOREVA. Nature Protocol, 17(1), 129–151. https://doi.org/10.1038/s41596‐021‐00636‐9
Galindo‐Prieto, B., Eriksson, L., & Trygg, J. (2014). Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 28(8), 623–632. https://doi.org/10.1002/cem.2627
Giacomoni, F., le Corguille, G., Monsoor, M., Landi, M., Pericard, P., Petera, M., Duperier, C., Tremblay‐Franco, M., Martin, J. F., Jacob, D., Goulitquer, S., Thévenot, E. A., & Caron, C. (2015). Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9), 1493–1495. https://doi.org/10.1093/bioinformatics/btu813
Goecks, J., Nekrutenko, A., Taylor, J., & The Galaxy, T. (2010). Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11(8), R86. https://doi.org/10.1186/gb‐2010‐11‐8‐r86
Guitton, Y., Tremblay‐Franco, M., le Corguille, G., Martin, J. F., Petera, M., Roger‐Mele, P., Delabrière, A., Goulitquer, S., Monsoor, M., Duperier, C., Canlet, C., Servien, R., Tardivel, P., Caron, C., Giacomoni, F., & Thévenot, E. A. (2017). Create, run, share, publish, and reference your LC‐MS, FIA‐MS, GC‐MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. International Journal of Biochemistry & Cell Biology, 93, 89–101. https://doi.org/10.1016/j.biocel.2017.07.002
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(7‐8), 1157–1182. https://doi.org/10.1162/153244303322753616
Hao, J., Liebeke, M., Astle, W., de Iorio, M., Bundy, J. G., & Ebbels, T. M. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocol, 9(6), 1416–1427. https://doi.org/10.1038/nprot.2014.090
Hecht, H., Skoryk, M., Cech, M., & Price, E. J. (2022). RIAssigner: A package for gas chromatographic retention index calculation. Journal of Open Source Software, 7(75), 4337. https://doi.org/10.21105/joss.04337
Heuckeroth, S., Damiani, T., Smirnov, A., Mokshyna, O., Brungs, C., Korf, A., Smith, J. D., Stincone, P., Dreolin, N., Nothias, L. F., Hyötyläinen, T., Orešič, M., Karst, U., Dorrestein, P. C., Petras, D., Du, X., van der Hooft, J. J. J., Schmid, R., & Pluskal, T. (2024). Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nature Protocol, 19(9), 2597–2641. https://doi.org/10.1038/s41596‐024‐00996‐y
Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MacDonald, J., Obenchain, V., Oleś, A. K., … Morgan, M. (2015). Orchestrating high‐throughput genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252
Hubert, M., Rousseeuw, P. J., & Vanden Branden, K. (2005). ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics, 47(1), 64–79. https://doi.org/10.1198/004017004000000563
Kessner, D., Chambers, M., Burke, R., Agus, D., & Mallick, P. (2008). ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics, 24(21), 2534–2536. https://doi.org/10.1093/bioinformatics/btn323
Kováts, E. (1958). Gas‐chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta, 41(7), 1915–1932. https://doi.org/10.1002/hlca.19580410703
Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289. https://doi.org/10.1021/ac202450g
Kumari, S., Stevens, D., Kind, T., Denkert, C., & Fiehn, O. (2011). Applying in‐silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC‐TOF mass spectrometry. Analytical Chemistry, 83(15), 5895–5902. https://doi.org/10.1021/ac2006137
Lawson, T. N., Weber, R. J., Jones, M. R., Chetwynd, A. J., Rodri Guez‐Blanco, G., di Guida, R., Viant, M. R., & Dunn, W. B. (2017). msPurity: Automated evaluation of precursor ion purity for mass spectrometry‐based fragmentation in metabolomics. Analytical Chemistry, 89(4), 2432–2439. https://doi.org/10.1021/acs.analchem.6b04358
Mallard, W. G., Andriamaharavo, N. R., Mirokhin, Y. A., Halket, J. M., & Stein, S. E. (2014). Creation of libraries of recurring mass spectra from large data sets assisted by a dual‐column workflow. Analytical Chemistry, 86(20), 10231–10238. https://doi.org/10.1021/ac502379x
Martin, M., Legat, B., Leenders, J., Vanwinsberghe, J., Rousseau, R., Boulanger, B., Eilers, P. H. C., de Tullio, P., & Govaerts, B. (2018). PepsNMR for (1)H NMR metabolomic data pre‐processing. Analytica Chimica Acta, 1019, 1–13. https://doi.org/10.1016/j.aca.2018.02.067
Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics, 17(5), 49. https://doi.org/10.1007/s11306‐021‐01796‐1
Mullowney, M. W., Duncan, K. R., Elsayed, S. S., Garg, N., van der Hooft, J. J. J., Martin, N. I., … Medema, M. H. (2023). Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov, 22(11), 895–916. https://doi.org/10.1038/s41573‐023‐00774‐7
Nash, W. J., & Dunn, W. B. (2019). From mass to metabolite in human untargeted metabolomics: Recent advances in annotation of metabolites applying liquid chromatography‐mass spectrometry data. TrAC Trends in Analytical Chemistry, 120, 115324. https://doi.org/10.1016/j.trac.2018.11.022
Olivon, F., Elie, N., Grelier, G., Roussi, F., Litaudon, M., & Touboul, D. (2018). MetGem software for the generation of molecular networks based on the t‐SNE algorithm. Analytical Chemistry, 90(23), 13900–13908. https://doi.org/10.1021/acs.analchem.8b03099
Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314
Paulhe, N., Canlet, C., Damont, A., Peyriga, L., Durand, S., Deborde, C., Alves, S., Bernillon, S., Berton, T., Bir, R., Bouville, A., Cahoreau, E., Centeno, D., Costantino, R., Debrauwer, L., Delabrière, A., Duperier, C., Emery, S., Flandin, A., … Giacomoni, F. (2022). PeakForest: A multi‐platform digital infrastructure for interoperable metabolite spectral data and metadata management. Metabolomics, 18(6), 40. https://doi.org/10.1007/s11306‐022‐01899‐3
Perez de Souza, L., Alseekh, S., Scossa, F., & Fernie, A. R. (2021). Ultra‐high‐performance liquid chromatography high‐resolution mass spectrometry variants for metabolomics research. Nat Methods, 18(7), 733–746. https://doi.org/10.1038/s41592‐021‐01116‐4
Perez de Souza, L., & Fernie, A. R. (2024). Computational methods for processing and interpreting mass spectrometry‐based metabolomics. Essays in Biochemistry, 68(1), 5–13. https://doi.org/10.1042/EBC20230019
Pryke, A., Mostaghim, S., & Nazemi, A. (2007). Heatmap Visualization of Population Based Multi Objective Algorithms. Paper presented at the Evolutionary Multi‐Criterion Optimization, Berlin, Heidelberg.
Ravanbakhsh, S., Liu, P., Bjorndahl, T. C., Mandal, R., Grant, J. R., Wilson, M., Eisner, R., Sinelnikov, I., Hu, X., Luchinat, C., Greiner, R., & Wishart, D. S. (2015). Accurate, fully‐automated NMR spectral profiling for metabolomics. PLoS One, 10(5), e0124219. https://doi.org/10.1371/journal.pone.0124219
Rinaudo, P., Boudah, S., Junot, C., & Thevenot, E. A. (2016). biosigner: A new method for the discovery of significant molecular signatures from omics data. Frontiers in Molecular Biosciences, 3, 26. https://doi.org/10.3389/fmolb.2016.00026
Roca, M., Alcoriza, M. I., Garcia‐Canaveras, J. C., & Lahoz, A. (2021). Reviewing the metabolome coverage provided by LC‐MS: Focus on sample preparation and chromatography‐A tutorial. Analytica Chimica Acta, 1147, 38–55. https://doi.org/10.1016/j.aca.2020.12.025
Rost, H. L., Sachsenberg, T., Aiche, S., Bielow, C., Weisser, H., Aicheler, F., Andreotti, S., Ehrlich, H.‐C., Gutenbrunner, P., EKenar, P., Liang, X., Nahnsen, S., Nilse, L., Pfeuffer, J., Rosenberger, G., Rurik, M., Schmitt, U., Veit, J., Walzer, M., … Kohlbacher, O. (2016). OpenMS: A flexible open‐source software platform for mass spectrometry data analysis. Nature Methods, 13(9), 741–748. https://doi.org/10.1038/nmeth.3959
Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361–374. https://doi.org/10.1007/s11306‐013‐0598‐6
Schmid, R., Heuckeroth, S., Korf, A., Smirnov, A., Myers, O., Dyrlund, T. S., Bushuiev, R., Murray, K. J., Hoffmann, N., Lu, M., Sarvepalli, A., Zhang, Z., Fleischauer, M., Dührkop, K., Wesner, M., Hoogstra, S. J., Rudt, E., Mokshyna, O., … Pluskal, T. (2023). Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nature Biotechnology, 41(4), 447–449. https://doi.org/10.1038/s41587‐023‐01690‐2
Simon‐Manso, Y., Marupaka, R., Yan, X., Liang, Y., Telu, K. H., Mirokhin, Y., & Stein, S. E. (2019). Mass spectrometry fingerprints of small‐molecule metabolites in biofluids: Building a spectral library of recurrent spectra for urine analysis. Analytical Chemistry, 91(18), 12021–12029. https://doi.org/10.1021/acs.analchem.9b02977
Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78(3), 779–787. https://doi.org/10.1021/ac051437y
Stauffer, D. B., McLafferty, F. W., Ellis, R. D., & Peterson, D. W. (1985). Adding forward searching capabilities to a reverse search algorithm for unknown mass spectra. Analytical Chemistry, 57(3), 771–773. https://doi.org/10.1021/ac00280a045
Stein, S. E. (1995). Chemical substructure identification by mass spectral library searching. Journal of the American Society for Mass Spectrometry, 6(8), 644–655. https://doi.org/10.1016/1044‐0305(95)00291‐K
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., … Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics, 3(3), 211–221. https://doi.org/10.1007/s11306‐007‐0082‐2
Tardivel, P. J. C., Canlet, C., Lefort, G., Tremblay‐Franco, M., Debrauwer, L., Concordet, D., & Servien, R. (2017). ASICS: An automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics, 13(10), 109. https://doi.org/10.1007/s11306‐017‐1244‐5
Tautenhahn, R., Bottcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504. https://doi.org/10.1186/1471‐2105‐9‐504
Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: A web‐based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. https://doi.org/10.1021/ac300698c
Thevenot, E. A., Roux, A., Xu, Y., Ezan, E., & Junot, C. (2015). Analysis of the Human Adult Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research, 14(8), 3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS‐DIAL: Data‐independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods, 12(6), 523–526. https://doi.org/10.1038/nmeth.3393
Ulaszewska, M. M., Weinert, C. H., Trimigno, A., Portmann, R., Andres Lacueva, C., Badertscher, R., Brennan, L., Brunius, C., Bub, A., Capozzi, F., Cialiè Rosso, M., Cordero, C. E., Daniel, H., Durand, S., Egert, B., Ferrario, P. G., Feskens, E. J. M., Franceschi, P., Garcia‐Aloy, M., … Vergeres, G. (2019). Nutrimetabolomics: An integrative action for metabolomic analyses in human nutritional studies. Molecular Nutrition & Food Research, 63(1), e1800384. https://doi.org/10.1002/mnfr.201800384
Urban, J., Afseth, N. K., & Štys, D. (2014). Fundamental definitions and confusions in mass spectrometry about mass assignment, centroiding and resolution. TrAC Trends in Analytical Chemistry, 53, 126–136. https://doi.org/10.1016/j.trac.2013.07.010
van Den Dool, H., & Kratz, P. D. (1963). A generalization of the retention index system including linear temperature programmed gas‐liquid partition chromatography. Journal of Chromatography A, 11, 463–471. https://doi.org/10.1016/s0021‐9673(01)80947‐x
van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141. https://doi.org/10.1021/pr900499r
Vazquez, U. E. (2018). Impact de souches commensales et probiotiques d'Escherichia coli sur la physiopathologie de l'hôte. Doctoral dissertation, Sorbonne Université. Hal Theses, https://theses.hal.science/tel‐02866073
Vu, T. N., Valkenborg, D., Smets, K., Verwaest, K. A., Dommisse, R., Lemiere, F., Verschoren, A., Goethals, B., & Laukens, K. (2011). An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data. BMC Bioinformatics, 12, 405. https://doi.org/10.1186/1471‐2105‐12‐405
Wang, J., Wang, C., & Han, X. (2019). Tutorial on lipidomics. Analytica Chimica Acta, 1061, 28–41. https://doi.org/10.1016/j.aca.2019.01.043
Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto‐Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W.‐T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval‐Calderón, M., … Bandeira, N. (2016). Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol, 34(8), 828–837. https://doi.org/10.1038/nbt.3597
Weber, R. J., Li, E., Bruty, J., He, S., & Viant, M. R. (2012). MaConDa: A publicly accessible mass spectrometry contaminants database. Bioinformatics, 28(21), 2856–2857. https://doi.org/10.1093/bioinformatics/bts527
Wehrens, R., Weingart, G., & Mattivi, F. (2014). metaMS: An open‐source pipeline for GC‐MS‐based untargeted metabolomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 966, 109–116. https://doi.org/10.1016/j.jchromb.2014.02.051
Wishart, D. S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B. L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres‐Calzada, C., Hiebert‐Giesbrecht, M., Lui, V. W., Varshavi, D., Varshavi, D., … Gautam, V. (2022). HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50(D1), D622–D631. https://doi.org/10.1093/nar/gkab1062
Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., … Querengesser, L. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, (Database issue), D521–526. https://doi.org/10.1093/nar/gkl923
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS‐regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169‐7439(01)00155‐1
Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–660. https://doi.org/10.1093/nar/gkp356
Xia, J., & Wishart, D. S. (2011). Web‐based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760. https://doi.org/10.1038/nprot.2011.319
Zhou, J., & Zhong, L. (2022). Applications of liquid chromatography‐mass spectrometry based metabolomics in predictive and personalized medicine. Frontiers in Molecular Biosciences, 9, 1049016. https://doi.org/10.3389/fmolb.2022.1049016