Exploring Naproxen Cocrystals Through Solid-State Vibrational Circular Dichroism
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
e-INFRA CZ 90254
Ministry of Education, Youth and Sports of the Czech Republic
24-10558S
Czech Science Foundation
A2_FCHI_2024_028
University of Chemistry and Technology
ANR-23-CE29-0006
French National Research Agency (ANR) Dichrosol project
PubMed
39961648
PubMed Central
PMC11832307
DOI
10.1002/chir.70027
Knihovny.cz E-zdroje
- Klíčová slova
- alanine, cocrystals, density functional theory, naproxen, proline, solid state, spectra modeling, vibrational circular dichroism,
- MeSH
- cirkulární dichroismus * metody MeSH
- krystalizace * MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- naproxen * chemie MeSH
- prolin chemie MeSH
- stereoizomerie MeSH
- teorie funkcionálu hustoty MeSH
- vibrace MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- naproxen * MeSH
- prolin MeSH
Vibrational circular dichroism (VCD) spectroscopy appears as a useful method for characterizing optically active substances in the solid state. This is particularly important for active pharmaceutical ingredients. However, measurement and interpretation of the spectra bring about many difficulties. To assess the experimental and computational methodologies, we explore an anti-inflammatory drug, naproxen. Infrared (IR) and VCD spectra of the pure compound and its cocrystals with alanine and proline were recorded, and the data were interpreted by quantum chemical simulations based on a cluster model and density functional theory. Although unpolarized IR spectroscopy can already distinguish pure ingredients from cocrystals or a mixture, the VCD technique is much more sensitive. For example, the naproxen carboxyl group strongly interacts with the zwitterionic alanine in the cocrystal via two strong hydrogen bonds, which results in a rather rigid structure crystallizing in the chiral P212121 Sohncke group and its VCD is relatively strong. In contrast, the d-proline and (S)-naproxen cocrystal (P21 group) involves a single hydrogen bond between the subunits, which together with a limited motion of the proline ring gives a weaker signal. Solid-state VCD spectroscopy thus appears useful for exploring composite crystal structures and interactions within them, including studies of pharmaceutical compounds.
Department of Analytical Chemistry University of Chemistry and Technology Prague 6 Czech Republic
Institut des Sciences Moléculaires d'Orsay CNRS Université Paris Saclay Orsay France
Institute of Organic Chemistry and Biochemistry Academy of Sciences Prague Czech Republic
Institute of Physics Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Taylor L. S., Braun D. E., Tajber L., and Steed J. W., “Crystallizing the Role of Solid‐State Form in Drug Delivery,” Crystal Growth & Design 22, no. 8 (2022): 4663–4665. PubMed
Karpinski P. H., “Polymorphism of Active Pharmaceutical Ingredients,” Chemical Engineering and Technology 29, no. 2 (2006): 233–237.
Nikolakakis I. and Partheniadis I., “Self‐Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release,” Pharmaceutics 9, no. 4 (2017): 50. PubMed PMC
Ameh E. S., “A Review of Basic Crystallography and X‐Ray Diffraction Applications,” Journal of Advanced Manufacturing Technology 105, no. 7 (2019): 3289–3302.
Huang Z., Suzuki H., Ito M., and Noguchi S., “Direct Detection of the Crystal Form of an Active Pharmaceutical Ingredient in Tablets by X‐Ray Absorption Fine Structure Spectroscopy,” International Journal of Pharmaceutics 625 (2022): 122057. PubMed
Chien P. H., Griffith K. J., Liu H., Gan Z., and Hu Y., “Recent Advances in Solid‐State Nuclear Magnetic Resonance Techniques for Materials Research,” Annual Review of Materials Research 50, no. 1 (2020): 493–520.
Elena B., Pintacuda G., Mifsud N., and Emsley L., “Molecular Structure Determination in Powders by NMR Crystallography From Proton Spin Diffusion,” Journal of the American Chemical Society 128, no. 29 (2006): 9555–9560. PubMed
García‐Nafría J. and Tate C. G., “Cryo‐Electron Microscopy: Moving Beyond X‐Ray Crystal Structures for Drug Receptors and Drug Development,” Annual Review of Pharmacology and Toxicology 60, no. 1 (2020): 51–71. PubMed
Zhang D., Zhu Y., Liu L., et al., “Atomic‐Resolution Transmission Electron Microscopy of Electron Beam–Sensitive Crystalline Materials,” Science 359, no. 6376 (2018): 675–679. PubMed
Bugay D. E., “Characterization of the Solid‐State: Spectroscopic Techniques,” Advanced Drug Delivery Reviews 48, no. 1 (2001): 43–65. PubMed
Erxleben A., “Application of Vibrational Spectroscopy to Study Solid‐State Transformations of Pharmaceuticals,” Current Pharmaceutical Design 22, no. 32 (2016): 4883–4911. PubMed
Strachan C., Saarinen J., Lipiäinen T., et al., “Spectroscopic Methods in Solid‐State Characterization,” in Characterization of Pharmaceutical Nano and Microsystems, eds. Peltonen L., Douroumis D., Fahr A., Siepmann J., Snowden M. J., and Torchilin V. P. (Weinheim: Wiley, 2021): 27–95.
Keiderling T. A., “Structure of Condensed Phase Peptides: Insights From Vibrational Circular Dichroism and Raman Optical Activity Techniques,” Chemical Reviews 120, no. 7 (2020): 3381–3419. PubMed
Nguyen L. A., He H., and Pham‐Huy C., “Chiral Drugs: An Overview,” International Journal of Biomedical Sciences 2, no. 2 (2006): 85–100. PubMed PMC
Weirich L., Tusha G., Engelage E., Schäfer L. V., and Merten C., “VCD Spectroscopy Reveals Conformational Changes of Chiral Crown Ethers Upon Complexation of Potassium and Ammonium Cations,” Physical Chemistry Chemical Physics 24, no. 19 (2022): 11721–11728. PubMed
Le Barbu‐Debus K., Scherrer A., Bouchet A., Sebastiani D., Vuilleumier R., and Zehnacker A., “Effect of Puckering Motion and Hydrogen Bond Formation on the Vibrational Circular Dichroism Spectrum of a Flexible Molecule: The Case of (S)‐1‐Indanol,” Physical Chemistry Chemical Physics 20, no. 21 (2018): 14635–14646. PubMed
Sklenář A., Růžičková L., Schrenková V., et al., “Solid‐State Vibrational Circular Dichroism for Pharmaceutical Applications: Polymorphs and Cocrystal of Sofosbuvir,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 318 (2024): 124478. PubMed
Frelek J., Gorecki M., Laszcz M., Suszczynska A., Vass E., and Szczepek W. J., “Distinguishing Between Polymorphic Forms of Linezolid by Solid‐Phase Electronic and Vibrational Circular Dichroism,” Chemical Communications 48, no. 43 (2012): 5295–5297. PubMed
Krupová M., Leszczenko P., Sierka E., Hamplová E. S., Pelc R., and Andrushchenko V., “Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals,” Chemistry ‐ A European Journal 28, no. 63 (2022): e202201922. PubMed
Rode J. E., Wasilczenko J., and Górecki M., “Differentiation of Solvatomorphs of Active Pharmaceutical Ingredients (API) by Solid‐State Vibrational Circular Dichroism (VCD),” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 310 (2024): 123851. PubMed
Rode J. E., Łyczko K., Kaczorek D., Kawęcki R., and Dobrowolski J., “VCD Spectra of Chiral Naphthalene‐1‐Carboxamides in the Solid‐State,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 310 (2024): 123939. PubMed
Scherrer A., Vuilleumier R., and Sebastiani D., “Nuclear Velocity Perturbation Theory of Vibrational Circular Dichroism,” Journal of Chemical Theory and Computation 9, no. 12 (2013): 5305–5312. PubMed
Ditler E., Zimmermann T., Kumar C., and Luber S., “Implementation of Nuclear Velocity Perturbation and Magnetic Field Perturbation Theory in CP2K and Their Application to Vibrational Circular Dichroism,” Journal of Chemical Theory and Computation 18, no. 4 (2022): 2448–2461. PubMed
Blasius J. and Kirchner B., “Selective Chirality Transfer to the Bis (Trifluoromethylsulfonyl)imide Anion of an Ionic Liquid,” Chemistry ‐ A European Journal 29, no. 51 (2023): e202301239. PubMed
Jähnigen S., Zehnacker A., and Vuilleumier R., “Computation of Solid‐State Vibrational Circular Dichroism in the Periodic Gauge,” Journal of Physical Chemistry Letters 12, no. 30 (2021): 7213–7220. PubMed
Quesada‐Moreno M. M., Virgili A., Monteagudo E., et al., “A Vibrational Circular Dichroism (VCD) Methodology for the Measurement of Enantiomeric Excess in Chiral Compounds in the Solid Phase and for the Complementary Use of NMR and VCD Techniques in Solution: The Camphor Case,” Analyst 143, no. 6 (2018): 1406–1416. PubMed
Declerck V., Perez‐Mellor A., Guillot R., Aitken D. J., Mons M., and Zehnacker A., “Vibrational Circular Dichroism as a Probe of Solid‐State Organisation of Derivatives of Cyclic Beta‐Amino Acids: Cis‐ and Trans‐2‐Aminocyclobutane‐1‐Carboxylic Acid,” Chirality 31, no. 8 (2019): 547–560. PubMed
Cheeseman J. R., Frisch M. J., Devlin F. J., and Stephens P. J., “Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory,” Chemical Physics Letters 252 (1996): 211–220.
Michal P., Kapitán J., Kessler J., and Bouř P., “Low‐Frequency Raman Optical Activity Provides Insight Into the Structure of Chiral Liquids,” Physical Chemistry Chemical Physics 24, no. 33 (2022): 19722–19733. PubMed
Bouř P., Sopková J., Bednárová L., Maloň P., and Keiderling T. A., “Transfer of Molecular Property Tensors in Cartesian Coordinates: A New Algorithm for Simulation of Vibrational Spectra,” Journal of Computational Chemistry 18 (1997): 646–659.
Yamamoto S., Li X., Ruud K., and Bouř P., “Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy,” Journal of Chemical Theory and Computation 8, no. 3 (2012): 977–985. PubMed
Kessler J., Kapitán J., and Bouř P., “First‐Principles Predictions of Vibrational Raman Optical Activity of Globular Proteins,” Journal of Physical Chemistry Letters 6, no. 16 (2015): 3314–3319.
Kessler J., Keiderling T. A., and Bouř P., “Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra,” Journal of Physical Chemistry B 118 (2014): 6937–6945. PubMed
Quesada‐Moreno M. M., Avilés‐Moreno J. R., López‐González J. J., et al., “The Synergy of Different Solid‐State Techniques to Elucidate the Supramolecular Assembly of Two 1H‐Benzotriazole Polymorphs,” Physical Chemistry Chemical Physics 21, no. 36 (2019): 19879–19889. PubMed
Quesada‐Moreno M. M., Cruz‐Cabeza A. J., Avilés‐Moreno J. R., et al., “The Curious Case of 2‐Propyl‐1H‐Benzimidazole in the Solid State: An Experimental and Theoretical Study,” Journal of Physical Chemistry A 121, no. 30 (2017): 5665–5674. PubMed
Ying P., Yu J., and Su W., “Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals,” Advanced Synthesis and Catalysis 363, no. 5 (2021): 1246–1271.
Latif S., Ijaz Q. A., Hameed M., et al., “Improvement of Physico‐Mechanical and Pharmacokinetic Attributes of Naproxen by Cocrystallization with l‐Alanine,” Journal of Drug Delivery Science and Technology 61 (2021): 102236.
Tumanova N., Tumanov N., Robeyns K., Filinchuk Y., Wouters J., and Leyssens T., “Structural Insight into Cocrystallization with Zwitterionic Co‐formers: Cocrystals of S‐Naproxen,” CrystEngComm 16, no. 35 (2014): 8185–8196.
Buffeteau T., Lagugné‐Labarthet F., and Sourisseau C., “Vibrational Circular Dichroism in General Anisotropic Thin Solid Films: Measurement and Theoretical Approach,” Applied Spectroscopy 59, no. 6 (2005): 732–745. PubMed
Merten C., Kowalik T., and Hartwig A., “Vibrational Circular Dichroism Spectroscopy of Solid Polymer Films: Effects of Sample Orientation,” Applied Spectroscopy 62, no. 8 (2008): 901–905. PubMed
Bouř P. and Keiderling T. A., “Partial Optimization of Molecular Geometry in Normal Coordinates and Use as a Tool for Simulation of Vibrational Spectra,” Journal of Chemical Physics 117 (2002): 4126–4132.
Hudecová J., Hopmann K. H., and Bouř P., “Correction of Vibrational Broadening in Molecular Dynamics Clusters with the Normal Mode Optimization Method,” Journal of Physical Chemistry B 116 (2012): 336–342. PubMed
Becke A. D., “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98 (1993): 5648–5652.
Frisch M. J., Pople J. A., and Binkley J. S., “Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets,” Journal of Chemical Physics 80, no. 7 (1984): 3265–3269.
Grimme S., Ehrlich S., and Goerigk L., “Effect of the Damping Function in Dispersion Corrected Density Functional Theory,” Journal of Computational Chemistry 32, no. 7 (2011): 1456–1465. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 16 rev. a.03 (Wallingford, CT: Gaussian, Inc, 2016).
Kapitán J., Baumruk V., V. Kopecký, Jr. , Pohl R., and Bouř P., “Proline Zwitterion Dynamics in Solution, Glass and Crystalline State,” Journal of the American Chemical Society 128, no. 41 (2006): 13451–13462. PubMed
Klamt A., “COSMO and COSMO‐RS,” in The Encyclopedia of Computational Chemistry, vol. 1, eds. Schleyer P. R., Allinger N. L., Clark T., et al. (Chichester: John Wiley & Sons, 1998): 604–615.
Born M. and Huang K., Dynamical Theory of Crystal Lattices (Oxford: Oxford Academic, 1996).
Tilborg A., Springuel G., Norberg B., Wouters J., and Leyssens T., “On the Influence of Using a Zwitterionic Coformer for Cocrystallization: Structural Focus on Naproxen–Proline Cocrystals,” CrystEngComm 15, no. 17 (2013): 3341–3350.
Kubelka J., Kim J., Bouř P., and Keiderling T. A., “Contribution of Transition Dipole Coupling to Amide Coupling in IR Spectra of Peptide Secondary Structures,” Vibrational Spectroscopy 42, no. 1 (2006): 63–73.
Kessler J., Andrushchenko V., Kapitán J., and Bouř P., “Insight into Vibrational Circular Dichroism of Proteins by Density Functional Modeling,” Physical Chemistry Chemical Physics 20, no. 7 (2018): 4926–4935. PubMed
Sato H. and Kawamura I., “Solid‐State Vibrational Circular Dichroism Studies on the Conformation of an Amino Acid Molecule in Crystalline State,” Biochimica et Biophysica Acta, Proteins and Proteomics 1868 (2020): 140439. PubMed
Jähnigen S., “Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory,” Angewandte Chemie, International Edition 62, no. 41 (2023): e202303595. PubMed
Jähnigen S., Le Barbu‐Debus K., Guillot R., Vuilleumier R., and Zehnacker A., “How Crystal Symmetry Dictates Non‐local Vibrational Circular Dichroism in the Solid State,” Angewandte Chemie, International Edition 62, no. 5 (2023): e202215599. PubMed PMC
Jähnigen S., Scherrer A., Vuilleumier R., and Sebastiani D., “Chiral Crystal Packing Induces Enhancement of Vibrational Circular Dichroism,” Angewandte Chemie, International Edition 57, no. 40 (2018): 13344–13348. PubMed
Le Barbu‐Debus K., Bowles J., Jähnigen S., et al., “Assessing Cluster Models of Solvation for the Description of Vibrational Circular Dichroism Spectra: Synergy Between Static and Dynamic Approaches,” Physical Chemistry Chemical Physics 22, no. 45 (2020): 26047–26068. PubMed