Exploring Naproxen Cocrystals Through Solid-State Vibrational Circular Dichroism

. 2025 Mar ; 37 (3) : e70027.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39961648

Grantová podpora
e-INFRA CZ 90254 Ministry of Education, Youth and Sports of the Czech Republic
24-10558S Czech Science Foundation
A2_FCHI_2024_028 University of Chemistry and Technology
ANR-23-CE29-0006 French National Research Agency (ANR) Dichrosol project

Vibrational circular dichroism (VCD) spectroscopy appears as a useful method for characterizing optically active substances in the solid state. This is particularly important for active pharmaceutical ingredients. However, measurement and interpretation of the spectra bring about many difficulties. To assess the experimental and computational methodologies, we explore an anti-inflammatory drug, naproxen. Infrared (IR) and VCD spectra of the pure compound and its cocrystals with alanine and proline were recorded, and the data were interpreted by quantum chemical simulations based on a cluster model and density functional theory. Although unpolarized IR spectroscopy can already distinguish pure ingredients from cocrystals or a mixture, the VCD technique is much more sensitive. For example, the naproxen carboxyl group strongly interacts with the zwitterionic alanine in the cocrystal via two strong hydrogen bonds, which results in a rather rigid structure crystallizing in the chiral P212121 Sohncke group and its VCD is relatively strong. In contrast, the d-proline and (S)-naproxen cocrystal (P21 group) involves a single hydrogen bond between the subunits, which together with a limited motion of the proline ring gives a weaker signal. Solid-state VCD spectroscopy thus appears useful for exploring composite crystal structures and interactions within them, including studies of pharmaceutical compounds.

Zobrazit více v PubMed

Taylor L. S., Braun D. E., Tajber L., and Steed J. W., “Crystallizing the Role of Solid‐State Form in Drug Delivery,” Crystal Growth & Design 22, no. 8 (2022): 4663–4665. PubMed

Karpinski P. H., “Polymorphism of Active Pharmaceutical Ingredients,” Chemical Engineering and Technology 29, no. 2 (2006): 233–237.

Nikolakakis I. and Partheniadis I., “Self‐Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release,” Pharmaceutics 9, no. 4 (2017): 50. PubMed PMC

Ameh E. S., “A Review of Basic Crystallography and X‐Ray Diffraction Applications,” Journal of Advanced Manufacturing Technology 105, no. 7 (2019): 3289–3302.

Huang Z., Suzuki H., Ito M., and Noguchi S., “Direct Detection of the Crystal Form of an Active Pharmaceutical Ingredient in Tablets by X‐Ray Absorption Fine Structure Spectroscopy,” International Journal of Pharmaceutics 625 (2022): 122057. PubMed

Chien P. H., Griffith K. J., Liu H., Gan Z., and Hu Y., “Recent Advances in Solid‐State Nuclear Magnetic Resonance Techniques for Materials Research,” Annual Review of Materials Research 50, no. 1 (2020): 493–520.

Elena B., Pintacuda G., Mifsud N., and Emsley L., “Molecular Structure Determination in Powders by NMR Crystallography From Proton Spin Diffusion,” Journal of the American Chemical Society 128, no. 29 (2006): 9555–9560. PubMed

García‐Nafría J. and Tate C. G., “Cryo‐Electron Microscopy: Moving Beyond X‐Ray Crystal Structures for Drug Receptors and Drug Development,” Annual Review of Pharmacology and Toxicology 60, no. 1 (2020): 51–71. PubMed

Zhang D., Zhu Y., Liu L., et al., “Atomic‐Resolution Transmission Electron Microscopy of Electron Beam–Sensitive Crystalline Materials,” Science 359, no. 6376 (2018): 675–679. PubMed

Bugay D. E., “Characterization of the Solid‐State: Spectroscopic Techniques,” Advanced Drug Delivery Reviews 48, no. 1 (2001): 43–65. PubMed

Erxleben A., “Application of Vibrational Spectroscopy to Study Solid‐State Transformations of Pharmaceuticals,” Current Pharmaceutical Design 22, no. 32 (2016): 4883–4911. PubMed

Strachan C., Saarinen J., Lipiäinen T., et al., “Spectroscopic Methods in Solid‐State Characterization,” in Characterization of Pharmaceutical Nano and Microsystems, eds. Peltonen L., Douroumis D., Fahr A., Siepmann J., Snowden M. J., and Torchilin V. P. (Weinheim: Wiley, 2021): 27–95.

Keiderling T. A., “Structure of Condensed Phase Peptides: Insights From Vibrational Circular Dichroism and Raman Optical Activity Techniques,” Chemical Reviews 120, no. 7 (2020): 3381–3419. PubMed

Nguyen L. A., He H., and Pham‐Huy C., “Chiral Drugs: An Overview,” International Journal of Biomedical Sciences 2, no. 2 (2006): 85–100. PubMed PMC

Weirich L., Tusha G., Engelage E., Schäfer L. V., and Merten C., “VCD Spectroscopy Reveals Conformational Changes of Chiral Crown Ethers Upon Complexation of Potassium and Ammonium Cations,” Physical Chemistry Chemical Physics 24, no. 19 (2022): 11721–11728. PubMed

Le Barbu‐Debus K., Scherrer A., Bouchet A., Sebastiani D., Vuilleumier R., and Zehnacker A., “Effect of Puckering Motion and Hydrogen Bond Formation on the Vibrational Circular Dichroism Spectrum of a Flexible Molecule: The Case of (S)‐1‐Indanol,” Physical Chemistry Chemical Physics 20, no. 21 (2018): 14635–14646. PubMed

Sklenář A., Růžičková L., Schrenková V., et al., “Solid‐State Vibrational Circular Dichroism for Pharmaceutical Applications: Polymorphs and Cocrystal of Sofosbuvir,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 318 (2024): 124478. PubMed

Frelek J., Gorecki M., Laszcz M., Suszczynska A., Vass E., and Szczepek W. J., “Distinguishing Between Polymorphic Forms of Linezolid by Solid‐Phase Electronic and Vibrational Circular Dichroism,” Chemical Communications 48, no. 43 (2012): 5295–5297. PubMed

Krupová M., Leszczenko P., Sierka E., Hamplová E. S., Pelc R., and Andrushchenko V., “Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals,” Chemistry ‐ A European Journal 28, no. 63 (2022): e202201922. PubMed

Rode J. E., Wasilczenko J., and Górecki M., “Differentiation of Solvatomorphs of Active Pharmaceutical Ingredients (API) by Solid‐State Vibrational Circular Dichroism (VCD),” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 310 (2024): 123851. PubMed

Rode J. E., Łyczko K., Kaczorek D., Kawęcki R., and Dobrowolski J., “VCD Spectra of Chiral Naphthalene‐1‐Carboxamides in the Solid‐State,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 310 (2024): 123939. PubMed

Scherrer A., Vuilleumier R., and Sebastiani D., “Nuclear Velocity Perturbation Theory of Vibrational Circular Dichroism,” Journal of Chemical Theory and Computation 9, no. 12 (2013): 5305–5312. PubMed

Ditler E., Zimmermann T., Kumar C., and Luber S., “Implementation of Nuclear Velocity Perturbation and Magnetic Field Perturbation Theory in CP2K and Their Application to Vibrational Circular Dichroism,” Journal of Chemical Theory and Computation 18, no. 4 (2022): 2448–2461. PubMed

Blasius J. and Kirchner B., “Selective Chirality Transfer to the Bis (Trifluoromethylsulfonyl)imide Anion of an Ionic Liquid,” Chemistry ‐ A European Journal 29, no. 51 (2023): e202301239. PubMed

Jähnigen S., Zehnacker A., and Vuilleumier R., “Computation of Solid‐State Vibrational Circular Dichroism in the Periodic Gauge,” Journal of Physical Chemistry Letters 12, no. 30 (2021): 7213–7220. PubMed

Quesada‐Moreno M. M., Virgili A., Monteagudo E., et al., “A Vibrational Circular Dichroism (VCD) Methodology for the Measurement of Enantiomeric Excess in Chiral Compounds in the Solid Phase and for the Complementary Use of NMR and VCD Techniques in Solution: The Camphor Case,” Analyst 143, no. 6 (2018): 1406–1416. PubMed

Declerck V., Perez‐Mellor A., Guillot R., Aitken D. J., Mons M., and Zehnacker A., “Vibrational Circular Dichroism as a Probe of Solid‐State Organisation of Derivatives of Cyclic Beta‐Amino Acids: Cis‐ and Trans‐2‐Aminocyclobutane‐1‐Carboxylic Acid,” Chirality 31, no. 8 (2019): 547–560. PubMed

Cheeseman J. R., Frisch M. J., Devlin F. J., and Stephens P. J., “Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory,” Chemical Physics Letters 252 (1996): 211–220.

Michal P., Kapitán J., Kessler J., and Bouř P., “Low‐Frequency Raman Optical Activity Provides Insight Into the Structure of Chiral Liquids,” Physical Chemistry Chemical Physics 24, no. 33 (2022): 19722–19733. PubMed

Bouř P., Sopková J., Bednárová L., Maloň P., and Keiderling T. A., “Transfer of Molecular Property Tensors in Cartesian Coordinates: A New Algorithm for Simulation of Vibrational Spectra,” Journal of Computational Chemistry 18 (1997): 646–659.

Yamamoto S., Li X., Ruud K., and Bouř P., “Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy,” Journal of Chemical Theory and Computation 8, no. 3 (2012): 977–985. PubMed

Kessler J., Kapitán J., and Bouř P., “First‐Principles Predictions of Vibrational Raman Optical Activity of Globular Proteins,” Journal of Physical Chemistry Letters 6, no. 16 (2015): 3314–3319.

Kessler J., Keiderling T. A., and Bouř P., “Arrangement of Fibril Side Chains Studied by Molecular Dynamics and Simulated Infrared and Vibrational Circular Dichroism Spectra,” Journal of Physical Chemistry B 118 (2014): 6937–6945. PubMed

Quesada‐Moreno M. M., Avilés‐Moreno J. R., López‐González J. J., et al., “The Synergy of Different Solid‐State Techniques to Elucidate the Supramolecular Assembly of Two 1H‐Benzotriazole Polymorphs,” Physical Chemistry Chemical Physics 21, no. 36 (2019): 19879–19889. PubMed

Quesada‐Moreno M. M., Cruz‐Cabeza A. J., Avilés‐Moreno J. R., et al., “The Curious Case of 2‐Propyl‐1H‐Benzimidazole in the Solid State: An Experimental and Theoretical Study,” Journal of Physical Chemistry A 121, no. 30 (2017): 5665–5674. PubMed

Ying P., Yu J., and Su W., “Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals,” Advanced Synthesis and Catalysis 363, no. 5 (2021): 1246–1271.

Latif S., Ijaz Q. A., Hameed M., et al., “Improvement of Physico‐Mechanical and Pharmacokinetic Attributes of Naproxen by Cocrystallization with l‐Alanine,” Journal of Drug Delivery Science and Technology 61 (2021): 102236.

Tumanova N., Tumanov N., Robeyns K., Filinchuk Y., Wouters J., and Leyssens T., “Structural Insight into Cocrystallization with Zwitterionic Co‐formers: Cocrystals of S‐Naproxen,” CrystEngComm 16, no. 35 (2014): 8185–8196.

Buffeteau T., Lagugné‐Labarthet F., and Sourisseau C., “Vibrational Circular Dichroism in General Anisotropic Thin Solid Films: Measurement and Theoretical Approach,” Applied Spectroscopy 59, no. 6 (2005): 732–745. PubMed

Merten C., Kowalik T., and Hartwig A., “Vibrational Circular Dichroism Spectroscopy of Solid Polymer Films: Effects of Sample Orientation,” Applied Spectroscopy 62, no. 8 (2008): 901–905. PubMed

Bouř P. and Keiderling T. A., “Partial Optimization of Molecular Geometry in Normal Coordinates and Use as a Tool for Simulation of Vibrational Spectra,” Journal of Chemical Physics 117 (2002): 4126–4132.

Hudecová J., Hopmann K. H., and Bouř P., “Correction of Vibrational Broadening in Molecular Dynamics Clusters with the Normal Mode Optimization Method,” Journal of Physical Chemistry B 116 (2012): 336–342. PubMed

Becke A. D., “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98 (1993): 5648–5652.

Frisch M. J., Pople J. A., and Binkley J. S., “Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets,” Journal of Chemical Physics 80, no. 7 (1984): 3265–3269.

Grimme S., Ehrlich S., and Goerigk L., “Effect of the Damping Function in Dispersion Corrected Density Functional Theory,” Journal of Computational Chemistry 32, no. 7 (2011): 1456–1465. PubMed

Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 16 rev. a.03 (Wallingford, CT: Gaussian, Inc, 2016).

Kapitán J., Baumruk V., V. Kopecký, Jr. , Pohl R., and Bouř P., “Proline Zwitterion Dynamics in Solution, Glass and Crystalline State,” Journal of the American Chemical Society 128, no. 41 (2006): 13451–13462. PubMed

Klamt A., “COSMO and COSMO‐RS,” in The Encyclopedia of Computational Chemistry, vol. 1, eds. Schleyer P. R., Allinger N. L., Clark T., et al. (Chichester: John Wiley & Sons, 1998): 604–615.

Born M. and Huang K., Dynamical Theory of Crystal Lattices (Oxford: Oxford Academic, 1996).

Tilborg A., Springuel G., Norberg B., Wouters J., and Leyssens T., “On the Influence of Using a Zwitterionic Coformer for Cocrystallization: Structural Focus on Naproxen–Proline Cocrystals,” CrystEngComm 15, no. 17 (2013): 3341–3350.

Kubelka J., Kim J., Bouř P., and Keiderling T. A., “Contribution of Transition Dipole Coupling to Amide Coupling in IR Spectra of Peptide Secondary Structures,” Vibrational Spectroscopy 42, no. 1 (2006): 63–73.

Kessler J., Andrushchenko V., Kapitán J., and Bouř P., “Insight into Vibrational Circular Dichroism of Proteins by Density Functional Modeling,” Physical Chemistry Chemical Physics 20, no. 7 (2018): 4926–4935. PubMed

Sato H. and Kawamura I., “Solid‐State Vibrational Circular Dichroism Studies on the Conformation of an Amino Acid Molecule in Crystalline State,” Biochimica et Biophysica Acta, Proteins and Proteomics 1868 (2020): 140439. PubMed

Jähnigen S., “Vibrational Circular Dichroism Spectroscopy of Chiral Molecular Crystals: Insights from Theory,” Angewandte Chemie, International Edition 62, no. 41 (2023): e202303595. PubMed

Jähnigen S., Le Barbu‐Debus K., Guillot R., Vuilleumier R., and Zehnacker A., “How Crystal Symmetry Dictates Non‐local Vibrational Circular Dichroism in the Solid State,” Angewandte Chemie, International Edition 62, no. 5 (2023): e202215599. PubMed PMC

Jähnigen S., Scherrer A., Vuilleumier R., and Sebastiani D., “Chiral Crystal Packing Induces Enhancement of Vibrational Circular Dichroism,” Angewandte Chemie, International Edition 57, no. 40 (2018): 13344–13348. PubMed

Le Barbu‐Debus K., Bowles J., Jähnigen S., et al., “Assessing Cluster Models of Solvation for the Description of Vibrational Circular Dichroism Spectra: Synergy Between Static and Dynamic Approaches,” Physical Chemistry Chemical Physics 22, no. 45 (2020): 26047–26068. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...