Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals

. 2022 Nov 11 ; 28 (63) : e202201922. [epub] 20220912

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35946996

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund
20-10144S Grantová Agentura České Republiky

Vibrational circular dichroism (VCD) spectroscopy has been widely used to study (bio)molecules in solution. However, its solid-state applications have been restricted due to experimental limitations and artifacts. Having overcome some of them, the first VCD study of nucleoside crystals is now presented. A two-orders-of-magnitude enhancement of VCD signal was observed due to high molecular order in the crystals and resulting supramolecular chirality. This allowed to obtain high-quality VCD spectra within minutes using minute amounts of samples. The VCD technique is extremely sensitive in detecting changes in a crystal order and is able to distinguish different hydration states of crystals. This elevates it to a new level, as a fast and efficient tool to study chiral crystalline samples. This study demonstrates that VCD is capable of near-instantaneous detection of hydration polymorphs and crystal degradation, which is of substantial interest in pharmaceutical industry (quality and stability control).

Zobrazit více v PubMed

W. Saenger, Principles of nucleic acid structure, Springer-Verlag, New York, 1984;

S. Neidle, Principles of Nucleic Acid Structure, Academic Press, Amsterdam, 2008.

B. Jayaram, T. Jain, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 343-361.

H. Urabe, Y. Sugawara, T. Kasuya, Phys. Rev. B Condens. Matter 1995, 51, 5666-5672.

S. H. Yalkowsky, R. M. Dannenfelser, AQUASOL Database of Aqueous Solubility, 5th ed. ed., University of Arizona, College of Pharmacy, Tucson, AZ, 1992.

T. Shimanouchi, M. Tsuboi, Y. Kyogoku, in Advances in Chemical Physics: Structure & Properties of Biomolecules, Vol. 7 (Ed.: J. Duchesne), John Wiley & Sons, Inc., Hoboken, NJ, USA, 1964, pp. 435-498.

U. Thewalt, C. E. Bugg, R. E. Marsh, Acta Crystallogr. Sect. B 1970, 26, 1089-1101;

Y. Sugawara, Y. Iimura, H. Iwasaki, H. Urabe, H. Saito, J. Biomol. Struct. Dyn. 1994, 11, 721-729;

S. Yoneda, Y. Sugawara, H. Urabe, J. Phys. Chem. A 2008, 112, 7055-7063;

S. Yoneda, Y. Sugawara, H. Urabe, J. Phys. Chem. B 2005, 109, 1304-1312;

D. Stueber, D. M. Grant, J. Am. Chem. Soc. 2002, 124, 10539-10551;

L. B. Clark, J. Am. Chem. Soc. 1994, 116, 5265-5270;

G. N. M. Reddy, A. Marsh, J. T. Davis, S. Masiero, S. P. Brown, Cryst. Growth Des. 2015, 15, 5945-5954;

F. Chen, Y. Liu, Y. Wang, Y. Ma, L. Qi, Cryst. Growth Des. 2020, 20, 2275-2282.

L. J. Bellami, Advances in Infrared Group Frequencies, Vol. 2, 2nd ed. ed., Chapman and Hall, London and New York, 1980;

G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin/Heidelberg/New York, 1991;

M. Tsuboi, in Basic Principles in Nucleic Acid Chemistry, Vol. 1 (Ed.: P. O. P. Ts′o); Academic Press, New York, 1974, pp. 399-452;

V. Andrushchenko, W. Pohle, Phys. Chem. Chem. Phys. 2019, 21, 11242-11258.

V. Maharaj, A. Rauk, J. H. Van de Sande, H. Wieser, J. Mol. Struct. 1997, 408, 315-318;

V. Andrushchenko, Z. Leonenko, D. Cramb, H. Van de Sande, H. Wieser, Biopolymers 2001, 61, 243-260;

V. Andrushchenko, H. Van de Sande, H. Wieser, Biopolymers 2003, 69, 529-545;

V. Andrushchenko, J. H. Van de Sande, H. Wieser, Biopolymers 2003, 72, 374-390;

P. Bouř, V. Andrushchenko, M. Kabeláč, V. Maharaj, H. Wieser, J. Phys. Chem. B 2005, 109, 20579-20587.

T. Buffeteau, F. Lagugné-Labarthet, C. Sourisseau, Appl. Spectrosc. 2005, 59, 732-745;

W. Kaminsky, K. Claborn, B. Kahr, Chem. Soc. Rev. 2004, 33, 514-525;

C. Merten, T. Kowalik, A. Hartwig, Appl. Spectrosc. 2008, 62, 901-905.

D. Kurouski, J. D. Handen, R. K. Dukor, L. A. Nafie, I. K. Lednev, Chem. Commun. 2015, 51, 89-92;

V. Declerck, A. Pérez-Mellor, R. Guillot, D. J. Aitken, M. Mons, A. Zehnacker, Chirality 2019, 31, 547-560;

H. Sato, I. Kawamura, Biochim. Biophys. Acta Proteins Proteomics 2020, 1868, 140439;

I. Kawamura, H. Sato, Anal. Biochem. 2019, 580, 14-20;

A. G. Petrovic, P. K. Bose, P. L. Polavarapu, Carbohydr. Res. 2004, 339, 2713-2720;

C. Merten, A. Hartwig, Macromolecules 2010, 43, 8373-8378;

J. Frelek, M. Górecki, M. Łaszcz, A. Suszczyńska, E. Vass, W. J. Szczepek, Chem. Commun. 2012, 48, 5295-5297.

M. Urbanová, R. K. Dukor, P. Pančoška, V. P. Gupta, T. A. Keiderling, Biochemistry 1991, 30, 10479-10485.

S. L. Ma, X. L. Cao, M. Mak, A. Sadik, C. Walkner, T. B. Freedman, I. K. Lednev, R. K. Dukor, L. A. Nafie, J. Am. Chem. Soc. 2007, 129, 12364-12365;

A. Fulara, A. Lakhani, S. Wojcik, H. Nieznanska, T. A. Keiderling, W. Dzwolak, J. Phys. Chem. B 2011, 115, 11010-11016;

M. Krupová, J. Kessler, P. Bouř, ChemPhysChem 2021, 22, 83-91.

T. Sasaki, I. Hisaki, T. Miyano, N. Tohnai, K. Morimoto, H. Sato, S. Tsuzuki, M. Miyata, Nat. Commun. 2013, 4, 1787;

H. Yamagishi, H. Sato, I. Kawamura, Chirality 2021, 33, 652-659;

H. Sato, Phys. Chem. Chem. Phys. 2020, 22, 7671-7679;

S. Jähnigen, A. Scherrer, R. Vuilleumier, D. Sebastiani, Angew. Chem. Int. Ed. 2018, 57, 13344-13348;

Angew. Chem. 2018, 130, 13528-13532.

Holzwart G, Holzwart Na, J. Opt. Soc. Am. 1973, 63, 324-331.

B. H. Mooers, B. F. Eichman, P. S. Ho, J. Mol. Biol. 1997, 269, 796-810.

M. H. Kim, L. Ulibarri, D. Keller, M. F. Maestre, C. Bustamante, J. Chem. Phys. 1986, 84, 2981-2989.

A. L. Stelling, A. Y. Liu, W. Zeng, R. Salinas, M. A. Schumacher, H. M. Al-Hashimi, Angew. Chem. Int. Ed. Engl. 2019, 58, 12010-12013;

A. L. Stelling, Y. Xu, H. Zhou, S. H. Choi, M. C. Clay, D. K. Merriman, H. M. Al-Hashimi, FEBS Lett. 2017, 591, 1770-1784.

M. Tsuboi, Appl. Spectrosc. Rev. 1970, 3, 45-90;

E. Taillandier, J. Liquier, in Methods Enzymol., Vol. 211 (Eds.: D. Lilley, J. Dahlberg), Academic Press, New York, 1992, pp. 307-335;

H. A. Tajmir-Riahi, Biopolymers 1991, 31, 101-108;

T. Theophanides, H. A. Tajmir-Riahi, in Spectroscopy of Biological Molecules (Eds.: C. Sandorfy, T. Theophanides), Reidel, Dordrecht, Netherlands, 1984, pp. 137-152;

A. P. White, J. W. Powell, Biochemistry 1995, 34, 1137-1142;

G. M. Segers-Nolten, N. M. Sijtsema, C. Otto, Biochemistry 1997, 36, 13241-13247;

M. Banyay, M. Sarkar, A. Graslund, Biophys. Chem. 2003, 104, 477-488.

J. A. Taboury, J. Liquier, E. Taillandier, Can. J. Chem. 1985, 63, 1904-1909;

E. Taillandier, J. Liquier, M. Ghomi, J. Mol. Struct. 1989, 214, 185-211.

D. A. Pearlman, S.-H. Kim, J. Biomol. Struct. Dyn. 1985, 3, 99-125;

N. Foloppe, B. Hartmann, L. Nilsson, A. D. MacKerell, Biophys. J. 2002, 82, 1554-1569.

S. S. Birke, M. Diem, Biophys. J. 1995, 68, 1045-1049.

V. Andrushchenko, P. Bouř, J. Phys. Chem. B 2009, 113, 283-291.

D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie, I. K. Lednev, Chem. Commun. 2012, 48, 2837-2839.

M. Krupová, J. Kapitán, P. Bouř, ACS Omega 2019, 4, 1265-1271.

V. Andrushchenko, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 456-462.

M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 2020, 85, 561-575.

C. L. Covington, P. L. Polavarapu, J. Phys. Chem. A 2013, 117, 3377-3386.

J. Liquiers, E. Taillandier, W. L. Peticolas, G. A. Thomas, J. Biomol. Struct. Dyn. 1990, 8, 295-302;

M. Ghomi, R. Letellier, J. Liquier, E. Taillandier, Int. J. Biochem. 1990, 22, 691-699.

S. Brahms, J. Brahms, J. Pilet, Isr. J. Chem. 1974, 12, 153-163.

D. S. Wishart, Y. D. Feunang, A. Marcu, A. C. Guo, K. Liang, R. Vázquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, Nucleic Acids Res. 2017, 46, D608-D617;

FooDB. FooDB. 2021. www.foodb.ca.

M. Ouali, R. Letellier, J. S. Sun, A. Akhebat, F. Adnet, J. Liquier, E. Taillandier, J. Am. Chem. Soc. 1993, 115, 4264-4270.

Y. Liu, Y. Yang, K. Jiang, D. Shi, J. Sun, Chem. Phys. Lett. 2012, 528, 53-58.

P. Bruździak, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117373.

Crystallography Open Database (COD). 2016. http://www.crystallography.net/.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.

B. Kirchner, J. Blasius, L. Esser, W. Reckien, Adv. Theory Sim. 2021, 4, 2000223;

J. Blasius, B. Kirchner, J. Phys. Chem. B 2020, 124, 7272-7283;

V. Andrushchenko, L. Benda, O. Páv, M. Dračínský, P. Bouř, J. Phys. Chem. B 2015, 119, 10682-10692;

V. Andrushchenko, D. Tsankov, M. Krasteva, H. Wieser, P. Bouř, J. Am. Chem. Soc. 2011, 133, 15055-15064.

A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2 1993, 799-805;

V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 1998, 19, 404-417;

M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.

A. Cuervo, P. D. Dans, J. L. Carrascosa, M. Orozco, G. Gomila, L. Fumagalli, Proc. Nat. Acad. Sci. 2014, 111, E3624-E3630.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 122, 154101.

P. Bouř, T. A. Keiderling, J. Chem. Phys. 2002, 117, 4126-4132.

P. Bouř, QGRAD, Czech Academy of Sciences, Prague, 2002-2009.

P. Bouř, eattt, Czech Academy of Sciences, Prague, 2002-2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...