Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
20-10144S
Grantová Agentura České Republiky
PubMed
35946996
DOI
10.1002/chem.202201922
Knihovny.cz E-zdroje
- Klíčová slova
- chirality, crystal engineering, enhanced VCD, solid-state VCD, solvomorphism,
- MeSH
- cirkulární dichroismus MeSH
- nukleosidy * MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleosidy * MeSH
Vibrational circular dichroism (VCD) spectroscopy has been widely used to study (bio)molecules in solution. However, its solid-state applications have been restricted due to experimental limitations and artifacts. Having overcome some of them, the first VCD study of nucleoside crystals is now presented. A two-orders-of-magnitude enhancement of VCD signal was observed due to high molecular order in the crystals and resulting supramolecular chirality. This allowed to obtain high-quality VCD spectra within minutes using minute amounts of samples. The VCD technique is extremely sensitive in detecting changes in a crystal order and is able to distinguish different hydration states of crystals. This elevates it to a new level, as a fast and efficient tool to study chiral crystalline samples. This study demonstrates that VCD is capable of near-instantaneous detection of hydration polymorphs and crystal degradation, which is of substantial interest in pharmaceutical industry (quality and stability control).
3rd Faculty of Medicine Charles University Ruská 87 10000 Prague Czech Republic
Department of Biology and Biochemistry University of Bath Claverton Down Bath BA2 7AY United Kingdom
Faculty of Chemistry Jagiellonian University Gronostajowa 2 30 387 Kraków Poland
Zobrazit více v PubMed
W. Saenger, Principles of nucleic acid structure, Springer-Verlag, New York, 1984;
S. Neidle, Principles of Nucleic Acid Structure, Academic Press, Amsterdam, 2008.
B. Jayaram, T. Jain, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 343-361.
H. Urabe, Y. Sugawara, T. Kasuya, Phys. Rev. B Condens. Matter 1995, 51, 5666-5672.
S. H. Yalkowsky, R. M. Dannenfelser, AQUASOL Database of Aqueous Solubility, 5th ed. ed., University of Arizona, College of Pharmacy, Tucson, AZ, 1992.
T. Shimanouchi, M. Tsuboi, Y. Kyogoku, in Advances in Chemical Physics: Structure & Properties of Biomolecules, Vol. 7 (Ed.: J. Duchesne), John Wiley & Sons, Inc., Hoboken, NJ, USA, 1964, pp. 435-498.
U. Thewalt, C. E. Bugg, R. E. Marsh, Acta Crystallogr. Sect. B 1970, 26, 1089-1101;
Y. Sugawara, Y. Iimura, H. Iwasaki, H. Urabe, H. Saito, J. Biomol. Struct. Dyn. 1994, 11, 721-729;
S. Yoneda, Y. Sugawara, H. Urabe, J. Phys. Chem. A 2008, 112, 7055-7063;
S. Yoneda, Y. Sugawara, H. Urabe, J. Phys. Chem. B 2005, 109, 1304-1312;
D. Stueber, D. M. Grant, J. Am. Chem. Soc. 2002, 124, 10539-10551;
L. B. Clark, J. Am. Chem. Soc. 1994, 116, 5265-5270;
G. N. M. Reddy, A. Marsh, J. T. Davis, S. Masiero, S. P. Brown, Cryst. Growth Des. 2015, 15, 5945-5954;
F. Chen, Y. Liu, Y. Wang, Y. Ma, L. Qi, Cryst. Growth Des. 2020, 20, 2275-2282.
L. J. Bellami, Advances in Infrared Group Frequencies, Vol. 2, 2nd ed. ed., Chapman and Hall, London and New York, 1980;
G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin/Heidelberg/New York, 1991;
M. Tsuboi, in Basic Principles in Nucleic Acid Chemistry, Vol. 1 (Ed.: P. O. P. Ts′o); Academic Press, New York, 1974, pp. 399-452;
V. Andrushchenko, W. Pohle, Phys. Chem. Chem. Phys. 2019, 21, 11242-11258.
V. Maharaj, A. Rauk, J. H. Van de Sande, H. Wieser, J. Mol. Struct. 1997, 408, 315-318;
V. Andrushchenko, Z. Leonenko, D. Cramb, H. Van de Sande, H. Wieser, Biopolymers 2001, 61, 243-260;
V. Andrushchenko, H. Van de Sande, H. Wieser, Biopolymers 2003, 69, 529-545;
V. Andrushchenko, J. H. Van de Sande, H. Wieser, Biopolymers 2003, 72, 374-390;
P. Bouř, V. Andrushchenko, M. Kabeláč, V. Maharaj, H. Wieser, J. Phys. Chem. B 2005, 109, 20579-20587.
T. Buffeteau, F. Lagugné-Labarthet, C. Sourisseau, Appl. Spectrosc. 2005, 59, 732-745;
W. Kaminsky, K. Claborn, B. Kahr, Chem. Soc. Rev. 2004, 33, 514-525;
C. Merten, T. Kowalik, A. Hartwig, Appl. Spectrosc. 2008, 62, 901-905.
D. Kurouski, J. D. Handen, R. K. Dukor, L. A. Nafie, I. K. Lednev, Chem. Commun. 2015, 51, 89-92;
V. Declerck, A. Pérez-Mellor, R. Guillot, D. J. Aitken, M. Mons, A. Zehnacker, Chirality 2019, 31, 547-560;
H. Sato, I. Kawamura, Biochim. Biophys. Acta Proteins Proteomics 2020, 1868, 140439;
I. Kawamura, H. Sato, Anal. Biochem. 2019, 580, 14-20;
A. G. Petrovic, P. K. Bose, P. L. Polavarapu, Carbohydr. Res. 2004, 339, 2713-2720;
C. Merten, A. Hartwig, Macromolecules 2010, 43, 8373-8378;
J. Frelek, M. Górecki, M. Łaszcz, A. Suszczyńska, E. Vass, W. J. Szczepek, Chem. Commun. 2012, 48, 5295-5297.
M. Urbanová, R. K. Dukor, P. Pančoška, V. P. Gupta, T. A. Keiderling, Biochemistry 1991, 30, 10479-10485.
S. L. Ma, X. L. Cao, M. Mak, A. Sadik, C. Walkner, T. B. Freedman, I. K. Lednev, R. K. Dukor, L. A. Nafie, J. Am. Chem. Soc. 2007, 129, 12364-12365;
A. Fulara, A. Lakhani, S. Wojcik, H. Nieznanska, T. A. Keiderling, W. Dzwolak, J. Phys. Chem. B 2011, 115, 11010-11016;
M. Krupová, J. Kessler, P. Bouř, ChemPhysChem 2021, 22, 83-91.
T. Sasaki, I. Hisaki, T. Miyano, N. Tohnai, K. Morimoto, H. Sato, S. Tsuzuki, M. Miyata, Nat. Commun. 2013, 4, 1787;
H. Yamagishi, H. Sato, I. Kawamura, Chirality 2021, 33, 652-659;
H. Sato, Phys. Chem. Chem. Phys. 2020, 22, 7671-7679;
S. Jähnigen, A. Scherrer, R. Vuilleumier, D. Sebastiani, Angew. Chem. Int. Ed. 2018, 57, 13344-13348;
Angew. Chem. 2018, 130, 13528-13532.
Holzwart G, Holzwart Na, J. Opt. Soc. Am. 1973, 63, 324-331.
B. H. Mooers, B. F. Eichman, P. S. Ho, J. Mol. Biol. 1997, 269, 796-810.
M. H. Kim, L. Ulibarri, D. Keller, M. F. Maestre, C. Bustamante, J. Chem. Phys. 1986, 84, 2981-2989.
A. L. Stelling, A. Y. Liu, W. Zeng, R. Salinas, M. A. Schumacher, H. M. Al-Hashimi, Angew. Chem. Int. Ed. Engl. 2019, 58, 12010-12013;
A. L. Stelling, Y. Xu, H. Zhou, S. H. Choi, M. C. Clay, D. K. Merriman, H. M. Al-Hashimi, FEBS Lett. 2017, 591, 1770-1784.
M. Tsuboi, Appl. Spectrosc. Rev. 1970, 3, 45-90;
E. Taillandier, J. Liquier, in Methods Enzymol., Vol. 211 (Eds.: D. Lilley, J. Dahlberg), Academic Press, New York, 1992, pp. 307-335;
H. A. Tajmir-Riahi, Biopolymers 1991, 31, 101-108;
T. Theophanides, H. A. Tajmir-Riahi, in Spectroscopy of Biological Molecules (Eds.: C. Sandorfy, T. Theophanides), Reidel, Dordrecht, Netherlands, 1984, pp. 137-152;
A. P. White, J. W. Powell, Biochemistry 1995, 34, 1137-1142;
G. M. Segers-Nolten, N. M. Sijtsema, C. Otto, Biochemistry 1997, 36, 13241-13247;
M. Banyay, M. Sarkar, A. Graslund, Biophys. Chem. 2003, 104, 477-488.
J. A. Taboury, J. Liquier, E. Taillandier, Can. J. Chem. 1985, 63, 1904-1909;
E. Taillandier, J. Liquier, M. Ghomi, J. Mol. Struct. 1989, 214, 185-211.
D. A. Pearlman, S.-H. Kim, J. Biomol. Struct. Dyn. 1985, 3, 99-125;
N. Foloppe, B. Hartmann, L. Nilsson, A. D. MacKerell, Biophys. J. 2002, 82, 1554-1569.
S. S. Birke, M. Diem, Biophys. J. 1995, 68, 1045-1049.
V. Andrushchenko, P. Bouř, J. Phys. Chem. B 2009, 113, 283-291.
D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie, I. K. Lednev, Chem. Commun. 2012, 48, 2837-2839.
M. Krupová, J. Kapitán, P. Bouř, ACS Omega 2019, 4, 1265-1271.
V. Andrushchenko, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 456-462.
M. Krupová, J. Kessler, P. Bouř, ChemPlusChem 2020, 85, 561-575.
C. L. Covington, P. L. Polavarapu, J. Phys. Chem. A 2013, 117, 3377-3386.
J. Liquiers, E. Taillandier, W. L. Peticolas, G. A. Thomas, J. Biomol. Struct. Dyn. 1990, 8, 295-302;
M. Ghomi, R. Letellier, J. Liquier, E. Taillandier, Int. J. Biochem. 1990, 22, 691-699.
S. Brahms, J. Brahms, J. Pilet, Isr. J. Chem. 1974, 12, 153-163.
D. S. Wishart, Y. D. Feunang, A. Marcu, A. C. Guo, K. Liang, R. Vázquez-Fresno, T. Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S. Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal, V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, Nucleic Acids Res. 2017, 46, D608-D617;
FooDB. FooDB. 2021. www.foodb.ca.
M. Ouali, R. Letellier, J. S. Sun, A. Akhebat, F. Adnet, J. Liquier, E. Taillandier, J. Am. Chem. Soc. 1993, 115, 4264-4270.
Y. Liu, Y. Yang, K. Jiang, D. Shi, J. Sun, Chem. Phys. Lett. 2012, 528, 53-58.
P. Bruździak, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117373.
Crystallography Open Database (COD). 2016. http://www.crystallography.net/.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
B. Kirchner, J. Blasius, L. Esser, W. Reckien, Adv. Theory Sim. 2021, 4, 2000223;
J. Blasius, B. Kirchner, J. Phys. Chem. B 2020, 124, 7272-7283;
V. Andrushchenko, L. Benda, O. Páv, M. Dračínský, P. Bouř, J. Phys. Chem. B 2015, 119, 10682-10692;
V. Andrushchenko, D. Tsankov, M. Krasteva, H. Wieser, P. Bouř, J. Am. Chem. Soc. 2011, 133, 15055-15064.
A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2 1993, 799-805;
V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 1998, 19, 404-417;
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
A. Cuervo, P. D. Dans, J. L. Carrascosa, M. Orozco, G. Gomila, L. Fumagalli, Proc. Nat. Acad. Sci. 2014, 111, E3624-E3630.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 122, 154101.
P. Bouř, T. A. Keiderling, J. Chem. Phys. 2002, 117, 4126-4132.
P. Bouř, QGRAD, Czech Academy of Sciences, Prague, 2002-2009.
P. Bouř, eattt, Czech Academy of Sciences, Prague, 2002-2009.
Exploring Naproxen Cocrystals Through Solid-State Vibrational Circular Dichroism